Солнечный коллектор своими руками: для отопления дома, бассейна, теплицы, душа

Содержание

для отопления дома, бассейна, теплицы, душа

Солнечный коллектор – это альтернативный источник получения тепловой энергии за счёт использования солнечной. Сейчас это удобное приспособление уже не новшество, но позволить себе его установку может далеко не каждый. Если подсчитать, покупка и монтаж коллектора, который удовлетворит бытовые нужды среднестатистической семьи, могут обойтись в пять тысяч американских долларов. Само собой, окупаемости такого источника придется ждать довольно долго. Но почему бы не сделать солнечный коллектор своими руками и установить его?

Виды

Стандартное устройство имеет вид металлической пластины, которая помещена в пластмассовый или стеклянный корпус. Поверхность этой пластины аккумулирует солнечную энергию, задерживает тепло и передаёт его для различных бытовых нужд: отопление, подогрев воды и т.д. Интегрированные коллекторы бывают нескольких видов.

Накопительные

Накопительные коллекторы ещё называют термосифонными. Такой солнечный коллектор своими руками без насоса получается наиболее выгодным. Его возможности позволяют не только подогревать воду, но и поддерживать температуру на необходимом уровне некоторое время.

Такой солнечный коллектор для отопления состоит из нескольких баков, наполненных водой, которые находятся в теплоизоляционном ящике. Баки накрыты стеклянной крышкой, через которую пробиваются солнечные лучи и подогревают воду. Этот вариант наиболее экономичен, прост в эксплуатации и в обслуживании, но его эффективность в зимнее время практически равна нулю.

Плоские

Ппредставляет собой большую металлическую пластину – абсорбер, который находится внутри алюминиевого корпуса со стеклянной крышкой. Плоский солнечный коллектор своими руками будет более эффективен при использовании именно крышки из стекла. Поглощает солнечную энергию через градостойкое стекло, которое хорошо пропускает свет и практически его не отражает.

Внутри ящика присутствует термоизоляция, что позволяет значительно снизить теплопотери. Сама пластина имеет низкий КПД, поэтому она покрыта аморфным полупроводником, который значительно увеличивает показатель аккумуляции тепловой энергии.

При изготовлении солнечного коллектора для бассейна своими руками, часто отдают предпочтение именно плоскому интегрированному устройству. Впрочем, он не хуже справляется и с другими задачами, такими как: подогрев воды для домашних нужд и отопление помещения. Плоский – самый широко используемый вариант. Абсорбер для солнечного коллектора своими руками предпочтительно делать из меди.

Жидкостные

Из названия понятно, что главным теплоносителем в них выступает именно жидкость. Водяной солнечный коллектор своими руками делается по следующей схеме. Через поглощающую солнечную энергию металлическую пластину, тепло передаётся по прикрепленным к ней трубам в бак с водой или незамерзающей жидкостью или прямо к потребителю.

К пластине подходят две трубы. Через одну из них подаётся холодная вода из бака, а через вторую в бак поступает уже подогретая жидкость. У труб обязательно должны присутствовать отверстия входа и выхода. Такую схему подогрева называют замкнутой.

Когда же подогретая вода напрямую подаётся для удовлетворения нужд пользователя – такую систему называют разомкнутой.

Неостекленные чаще применяются для нагрева воды в бассейне, поэтому сборка таких тепловых солнечных коллекторов своими руками не требует закупки дорогих материалов – сгодится резина и пластмасса. У остекленных КПД выше, поэтому они способны отапливать дом и обеспечивать потребителя горячей водой.

Воздушные

Воздушные устройства экономичнее вышеперечисленных аналогов, использующих воду в качестве теплоносителя. Воздух не замерзает, не подтекает и не кипит как вода. Если в такой системе происходит утечка, она не приносит столько проблем, однако определить где она произошла довольно сложно.

Самостоятельное изготовление не обходится потребителю дорого. Солнцеприемная панель, которая накрывается стеклом, нагревает воздух, который находится между ней и теплоизоляционной пластиной. Грубо говоря, это плоский коллектор, имеющий внутри пространство для воздуха. Внутрь поступает холодный воздух и под действием солнечной энергии подаётся потребителю тёплый.

Вентилятор, который крепится в воздуховод или непосредственно на пластину, улучшает циркуляцию и улучшает воздухообмен в устройстве. Для работы вентилятора требуется использование электричества, что не очень-то экономно.

Такие варианты долговечны и надёжны и обслуживать их проще, чем устройства, которые используют жидкость в качестве теплоносителя. Для поддержания нужной температуры воздуха в погребе или для отопления теплицы солнечным коллектором подойдёт как раз такой вариант.

Как это работает

Коллектор собирает энергию с помощью светонакопителя или, другим словами, солнцеприемной панели, которая пропускает свет к аккумулирующей металлической пластине, где солнечная энергия преобразуется в тепловую. Пластина передает тепло теплоносителю, которым может быть как жидкость, так и воздух. Вода отправляется по трубам к потребителю. С помощью такого коллектора можно отопить жилище, нагреть воду для различных домашних целей или бассейна.

Воздушные коллекторы используются, в основном для отопления помещения или подогрева воздуха внутри него. Экономия при использовании таких устройств очевидна. Во-первых, не нужно использовать какое-либо топливо, а во-вторых, снижается потребление электроэнергии.

Для того чтобы получить максимальный эффект от использования коллектора и бесплатно подогревать воду на протяжении семи месяцев в году, он должен иметь большую поверхность и дополнительные теплообменные устройства.

Коллектор Станилова

Инженер Станислав Станилов представил миру самую универсальную конструкцию солнечного коллектора. Основной идеей использования разработанного им устройства является получение тепловой энергии за счет создания парникового эффекта внутри коллектора.

Конструкция коллектора

Конструкция этого коллектора очень проста. По сути, это солнечный коллектор из стальных труб, сваренных в радиатор, который помещён в деревянный контейнер, защищённый теплоизоляцией. В качестве теплоизоляционного материала могут выступать минеральная вата, пенопласт, понополистирол.

На дно коробки кладется оцинкованный металлический лист, на который монтируется радиатор. И лист, и радиатор окрашиваются в чёрный, а сама коробка покрывается белой краской. Разумеется, контейнер накрывается стеклянной крышкой, которая хорошо герметизируется.

Материалы и детали для изготовления

Для сооружения такого самодельного солнечного коллектора для отопления дома понадобится:

  • стекло, которые будет служить в качестве крышки. Размер его будет зависеть от габаритов короба. Для хорошей эффективности лучше подбирать стекло размером 1700 мм на 700 мм;
  • рама под стекло – её можно сварить самостоятельно из уголков или сколотить из деревянных планок;
  • доска для короба. Тут можно использовать любые доски, даже с разборки старой мебели или дощатого пола;
  • прокатный уголок;
  • соединительная муфта;
  • трубы для сборки радиатора;
  • хомуты для крепления радиатора;
  • лист оцинкованного железа;
  • приёмная и выпускная труба радиатора;
  • бак объемом 200−300 литров;
  • аквакамера;
  • теплоизоляция (листы пенопласта, пенополистирола, мин. вата, эковата).

Этапы работ

Этапы изготовления коллектора Станилова своими руками:

  1. Из досок сколачивается контейнер, дно которого укрепляется брусьями.
  2. На дно укладывается теплоизолятор. Основание должно быть особенно тщательно утеплено, чтобы избежать утечки тепла у теплообменника.
  3. После на дно короба устраивают оцинкованную пластину и устанавливают радиатор, который сваривается из труб, и закрепляют его стальными хомутами.
  4. Радиатор и лист под ним окрашиваются в черный цвет, а короб – в белый или серебристый.
  5. Бак с водой должен быть установлен под коллектором в теплом помещении. Между ёмкостью для воды и коллектором нужно устроить теплоизоляцию, чтобы трубы находились в тепле. Бак можно поместить в большую бочку, в которую можно засыпать керамзит, песок, опилки и т.д. и таким образом утеплить.
  6. Над баком нужно установить аквакамеру для того чтобы в сети создавалось давление.
  7. Монтаж солнечного коллектора своими руками нужно осуществлять на южной стороне кровли.
  8. После того как все элементы системы готовы и установлены, нужно соединить их в сеть полудюймовыми трубами, которые должны быть хорошо утеплены, дабы уменьшить теплопотери.
  9. Неплохо будет соорудить и контроллер для солнечного коллектора своими руками, так как заводские устройства эксплуатируются недолго.

Расчет размеров

Расчёт размеров для того чтобы изготовить солнечный коллектор для отопления своими руками, прежде всего, направлен на определение нагрузки системы теплоснабжения, покрытие которой берет на себя это устройство. Само собой, что подразумевается использование нескольких источников энергии в комплексе, а не только энергии солнца. В этом деле важно расположить систему таким образом, чтобы она взаимодействовала с другими – тогда это даст максимальный эффект.

Для определения площади коллектора нужно знать, для каких целей он будет использоваться: отопление, подогрев воды или и того, и другого. Проанализировав данные водомера, потребностей в обогреве и данные инсоляции местности, в которой планируется установка, можно высчитать площадь коллектора. К тому же, надо учесть потребности в горячей воде всех потребителей, которые планируется подключить к сети: стиральной машины, посудомоечной машины и т.д.

  

Селективное покрытие

Селективное покрытие выполняет едва ли не самую основную функцию в работе коллектора. Пластина или радиатор с нанесённым покрытием притягивают в разы больше солнечной энергии, превращая её в тепло. Можно приобрести специальный химикат в качестве селективного покрытия, а можно просто окрасить теплонакопитель в чёрный цвет.

Чтобы сделать селективное покрытие для солнечных коллекторов своими руками, можно применить:

  • специальный готовый химикат;
  • оксиды разных металлов;
  • тонкий теплоизоляционный материал;
  • чёрный хром;
  • селективную краску для коллектора;
  • чёрную краску или пленку.

Коллекторы из подручных материалов

Собрать солнечный коллектор для отопления дома своими руками и дешевле и интереснее, ведь изготовить его можно из различных подручных материалов.

Из металлических труб

Этот вариант сборки походит на коллектор Станилова. При сборке солнечного коллектора из медных труб своими руками, из труб варится радиатор и помешается в деревянный короб, проложенный изнутри теплоизоляцией.

Наиболее эффективными будут медные трубы, алюминиевые тоже можно использовать, но их тяжело варить, а вот стальные – наиболее удачный вариант.

Такой самодельный коллектор не должен быть чересчур большим, чтобы его было легко собрать и монтировать. Диаметр труб на солнечные коллектора для сварки радиатора должен быть меньше, чем у труб для ввода и вывода теплоносителя.

Из пластиковых и металлопластиковых труб

Как сделать солнечный коллектор своими руками, имея в домашнем арсенале пластиковые трубы? Они менее эффективны в качестве теплонакопителя, однако в разы дешевле меди и не коррозируют как сталь.

Трубы выкладываются в короб по спирали и закрепляются хомутами. Их можно покрыть черной или селективной краской для большей эффективности.

С укладкой труб можно экспериментировать. Так как трубы плохо гнутся, их можно укладывать не только по спирали, а и зигзагом. Среди преимуществ, пластиковые трубы легко и быстро поддаются пайке.

Из шланга

Чтобы сделать солнечный коллектор для душа своими руками понадобится резиновый шланг. Вода в нем нагревается очень быстро, поэтому его тоже можно использовать в качестве теплообменника. Это самый экономичный вариант при изготовлении коллектора своими руками. Шланг или полиэтиленовая труба укладывается в короб и прикрепляется хомутами.

Так как шланг скручен по спирали, в нем не будет происходить естественная циркуляция воды. Чтобы использовать в данной системе ёмкость для накопления воды, необходимо оснастить её циркуляционным насосом. Если это дачный участок и горячей воды уходит немного, то того её количества, которое буде поступать в трубу, может оказаться достаточно.

Из банок

Теплоносителем солнечного коллектора из алюминиевых банок выступает воздух. Банки соединяются между собой, образуя трубу. Чтобы сделать солнечный коллектор из пивных банок нужно обрезать днище и верх каждой банки, состыковать их между собой и склеить герметиком. Готовые трубы помещаются в деревянный короб и накрываются стеклом.

В основном, воздушный солнечный коллектор из пивных банок используют для устранения сырости в подвале или для обогрева теплицы. В качестве теплонакопителя можно использовать не только пивные банки, а и пластиковые бутылки.

Из холодильника

Солнечные водогрейные панели своими руками можно соорудить из непригодного холодильника или радиатора старого авто. Конденсатор, извлеченный из холодильника, надо хорошо промыть. Горячую воду, полученную таким способом, лучше использовать только для технических целей.

На дно короба расстилается фольга и резиновый коврик, потом на них укладывается конденсатор и закрепляется. Для этого можно применить ремни, хомуты, либо то крепление, которым он был прикреплен в холодильнике. Для создания давления в системе не помешает установить над баком насос или аквакамеру.

Видео                                                                                         

Вы узнаете, как сделать солнечный коллектор своими руками, из следующего видео.

Воздушный солнечный коллектор для отопления дома


Панельные воздушные солнечные коллекторы для отопления дома — это источник дополнительной тепловой энергии. Модули подходят для жилых домов, теплиц, дач, коттеджей, турбаз. Один блок в среднем вырабатывает около 1,5 кВт/час, чего более чем достаточно для поддержания комфортной температуры в весенне-осенний период.

Воздушные коллекторы в зимнее время года сокращают расход топлива (газа, электричества), на котором работает котёл до 52%. Летом модуль работает на поддержание влажностного микроклимата и кондиционирование помещений.

Как устроен воздушный коллектор

Принцип работы основан на простых физических законах. Солнечные лучи проникая в атмосферу земли практически не отдают тепла. Нагрев воздуха происходит после того как ультрафиолет попадает на твердые поверхности. Под действием солнечных лучей грунт и другие предметы нагреваются. Происходит теплообмен.

Устройство воздушных солнечных коллекторов использует описанное явление, аккумулируя тепло и направляя его в помещение. В конструкции присутствуют следующие детали:

  • корпус с теплоизоляцией;
  • нижний экран, абсорбер;
  • радиатор с аккумулирующими ребрами;
  • верхняя часть из обычного стекла или поликарбоната.

В конструкцию коллектора входят вентиляторы. Основное предназначение: нагнетание нагретого воздуха в жилые помещения. В процессе работы вентиляторов создается принудительная конвекция, за счет которой холодные воздушные массы поступают в блок коллектора.

Принцип обогрева и его эффективность

Абсорберы воздушных коллекторов делают черного цвета, для увеличения интенсивности нагрева под воздействием солнечного излучения. Температура воздуха в коллекторе достигает 70-80°С. Тепла с избытком хватает для полноценного обогрева помещений небольшой площади.

Принцип действия воздухонагревателя следующий:

  • воздух закачивается с улицы в корпус коллектора принудительным способом;
  • внутри блока установлены абсорберы, отражающие тепло, поднимающие температуру внутри ящика до 70-80°С;
  • происходит нагрев воздуха;
  • разогретые воздушные массы принудительно нагнетаются в отапливаемые помещения.

В заводских моделях обеспечение циркуляции воздуха осуществляется при помощи вентиляторов, подключенных к солнечным батареям. Как только ультрафиолетовое излучение становится достаточно интенсивным, чтобы выработать некоторое количество электроэнергии, турбины включаются. Коллекторы начинают работать на обогрев. Зимой интенсивность излучения Солнца снижается.

Дом не сможет полностью функционировать на солнечном воздушном отоплении. Воздухонагреватели используются как дополнительный источник тепла. При правильных расчетах одна установка (данные взяты из технических характеристик воздушных солнечных коллекторов Solar Fox) обеспечит следующую экономию, за отопительный сезон:

  • газ до 315 м³;
  • дрова до 3,9 м³.

Система солнечного воздушного обогрева компенсирует около 30% необходимого для здания тепла. Полная окупаемость достигается в течение 2-3 лет. Если учесть, что принцип работы связан с использованием установки и для кондиционирования воздуха, а в течение года вырабатывается около 4000 кВт, целесообразность использования становится еще очевиднее.

В странах ЕС широкое распространение получило конструкторское решение «солнечная стена». Конструкция заключается в следующем:

  • в здании одна из стен изготавливается из аккумулирующего материала;
  • перед панелью устанавливается стеклянная перегородка;
  • в течение дня тепло аккумулируется, после чего отдается в помещение ночью.


Для усиления конвекции, солнечный коллектор делается не во всю стену. Вверху и внизу предусматривают раздвижные шторки.

На КПД воздушного коллектора существенно влияет время года. Так, в декабре коэффициент полезного действия поддерживается на уровне 50%, в октябре и марте увеличивается до 75%.

Солнечный коллектор — водяной или воздушный

Каждый из нагревателей эффективен, отличается только основное предназначение и принцип работы:

  • Водяной коллектор — применяется для обеспечения потребностей в ГВС и низкотемпературных систем теплых полов. Эффективность работы в зимний период существенно снижается. Вакуумные и панельные коллекторы косвенного нагрева, подсоединенные к буферной емкости, продолжают аккумулировать тепло в течение всего года. Главный недостаток, высокая стоимость гелиоколлектора, монтажа и обвязки.
  • Воздушный вентиляционный коллектор — отличается простой конструкцией и устройством, которое при желании можно изготовить самостоятельно. Основное предназначение: обогрев помещений. Конечно, существуют схемы, позволяющие использовать полученное тепло для ГВС, но при этом эффективность воздушных коллекторов падает практически вдвое. Преимущества: низкая стоимость комплекта и установки.


Солнечные воздушные системы отопления работают только днем. Нагрев воздуха начинается даже в пасмурную погоду, при сильной облачности и во время дождя. Работа воздухонагревателей зимой не прекращается.

Как и из чего сделать воздушный коллектор

Главное достоинство солнечных воздухонагревателей, в простоте конструкции. При желании можно сделать самодельное солнечное воздушное отопление частного дома, затратив на это минимум средств.

Для начала потребуется сделать расчеты производительности, затем подобрать тип конструкции и выбрать материалы для изготовления. Корпус и абсорберы можно изготовить из подручных средств, существенно сэкономив бюджет.

Как сделать расчёты коллектора

Вычисления выполняются следующим образом:

  • каждый м² от площади коллектора даст 1,5 кВт/час тепловой энергии, при условии, что будет солнечная погода;
  • для полноценного обогрева помещения требуется 1 кВт тепловой энергии на 10 м².


Приблизительный расчет мощности покажет, что для отопления жилого дома на 100 м² необходимо установить коллекторы общей площадью 7-8 м².

Для обеспечения максимальной производительности надо определить сторону дома с максимальной интенсивностью ультрафиолетового излучения. Практика показывает, что оптимальное место для установки — это скат кровли или южная стена здания.

Типы конструкции коллектора

Классификация осуществляется по различиям корпуса коллекторов. Заводской воздухонагреватель обычно имеет надувной каркас, с двумя съемными панелями. При необходимости модуль легко демонтируется, разбирается и переносится на другое место. Сделать своими руками конструкцию надувного типа навряд ли получится.

В домашних условиях выполняют сборку неразборного корпуса. Это деревянный ящик с абсорбером, радиатором и верхним прозрачным экраном. При изготовлении используют подручные средства: профнастил, алюминиевые пивные банки, обычное стекло.

Материалы для изготовления коллектора

Для изготовления модулей для нагрева жилого или хозяйственного здания потребуются несколько комплектующих:

  • Внешний блок — собирается из фанеры, ДСП и деревянных брусков. По внешнему виду напоминает обыкновенный коробок.
  • Дно — изготавливают из профнастила. Лист металла обрабатывают специальной черной краской с высоким коэффициентом светопоглащения. Абсорбирующую поверхность можно сделать из разрезанных алюминиевых банок. Дно обшивают изоляционным материалом, чтобы избежать тепловых потерь.
  • Ребра радиатора — используются для лучшей абсорбции тепла. При изготовлении используют тонкие листы алюминия, меди. Можно установить уже готовый радиатор из старого холодильника.
  • Крышка коллектора — делается из сотового поликарбоната, отличающегося хорошей светопропускной способностью и одновременно удерживающая тепло внутри коллектора. Чтобы сэкономить, в качестве покрытия можно использовать обычное стекло. Теплоэффективность при этом будет нижем чем у коллекторов, закрытых поликарбонатом.
  • Теплоизоляция корпуса — по периметру каркас обшивают пенополистиролом.

Для нагнетания воздуха в отапливаемые помещения устанавливают 2-4 вентилятора. Подойдут кулеры, снятые со старого компьютера.

Установка и подключение воздушного коллектора

Для монтажа воздухонагревателей нужно подготовить поверхность стены, сделав 4 отверстия под воздуховоды. Внутри здания гофрированные трубы разводят по комнатам, направляя в сторону пола.

Самодельные воздушные солнечные коллекторы для отопления дома подключаются к электросети, через трансформатор. При наличии навыков в качестве источника питания можно установить аккумулятор на солнечных батареях.

Теплоэффективность изготовленных своими руками воздухонагревателей существенно ниже, чем у заводской продукции. При отсутствии специальных навыков лучше использовать готовые модули. Как показывают реальные отзывы о коллекторах, оптимальный вариант для покупки из представленных на отечественном рынке: Solar Fox, Солнцедар и ЯSolar-Air.

Воздухонагреватели не используются в качестве основного источника тепла и выполняют исключительно вспомогательную функцию. В домах с солнечными воздушными коллекторами изначально устанавливают котел, покрывающий потребности в отоплении на 100%.

При грамотных расчетах и интенсивной эксплуатации, вложения окупятся в течение 1-2 лет. В случае самостоятельного изготовления коллектора, затраты вернутся уже в середине первого отопительного сезона.

Пошаговая инструкция изготовления воздушного коллектора

Изготовление воздушного солнечного коллектора из алюминиевых банок:

Изготовление солнечного воздухогрейного коллектора из квадратной трубы:
{banner_downtext}

Как сделать солнечный коллектор для обогрева воды на даче

Имея проблемы с электроснабжением, вопрос получения горячей воды для технических нужд сильно осложняется. Эффективным решением в такой ситуации будет применение солнечного водяного коллектора. Он позволит нагревать воду от солнечного света до 40 градусов Цельсия и более. При этом его можно оснастить разного рода автоматическими системами, чтобы адаптировать горячее водоснабжение под необходимые в конкретном случае условия.

Материалы для изготовления коллектора


  • змеевик (радиатор) от холодильника;
  • деревянные бруски;
  • фанера желательно влагостойкая;
  • фольга строительная;
  • стрейч пленка или стекло;
  • тонкий шланг ПВХ или силиконовый.

Сборка водяного коллектора


Корпус коллектора состоит из фанерного щитка с прибитыми по краям брусками. Его размер подбирается таким образом, чтобы разместить змеевик.

Внутренняя сторона корпуса устилается фольгой, которую можно закрепить на двусторонний скотч.

Сверху фольги укладывается змеевик. При этом в брусках корпуса делается 2 отверстия, чтобы вывести его трубки наружу. Чтобы змеевик не болтался, его следует прикрутить саморезами или просто приклеить скотчем.

Далее нужно закрыть коллектор прозрачным материалом. В идеале использовать для этого цельное стекло, но можно просто обмотать корпус несколькими слоями стрейч пленки.

Затем к коллектору подключается шланг для циркуляции воды. Если его диаметр больше трубок, то их можно подмотать изолентой.

Вариант автономного подключения коллектора для нагрева всего объема бака


Чтобы обеспечить нагрев воды в емкости от коллектора необходимо обеспечить ее циркуляцию. Для этого потребуется:
  • погружной насос 12 В;
  • солнечная батарея 12 В;
  • автоматический конвертер напряжения;
  • разъем MC4 папа/мама.

Нужно соединить шлангами бак с водой и коллектор, который располагается на солнечном месте, к примеру, на крыше дома. При этом бак можно поставить в помещение. Чтобы вода могла двигаться от коллектора до емкости, нужно установить в последнюю водяную погружную помпу на 12 В.

Достаточно производительности насоса в 200-300 л/час. Важно, чтобы он смог поднять столб воды на нужную высоту от бака до коллектора.
Поскольку данная система должна работать автономно от центральной электрической сети, то для питания помпы лучше всего использовать солнечную батарею. Для этого насос сначала подсоединяется к автоматическому конвертеру напряжения, который настраивается на выдачу 12 В, а к нему через разъемы MC4 подключается солнечная батарея.

Таким образом, когда на коллектор и солнечную панель попадает дневной свет, то вода греется и циркулирует из бака в змеевик, затем сливается обратно в бак.

В змеевике она прогревается, поэтому поднимается температура и в самой емкости. Как только дневной свет прекратиться, то панель перестанет питать насос и тот остановит прокачку воды, что естественно хорошо, поскольку без солнца коллектор уже не работает на нагрев.

Такой вариант позволит нагреть летом бак на 50 литров до 40-50 градусов Цельсия за 3-5 часов. Данное оборудование даст достаточно воды даже для наполнения ванны. При этом если бак утеплен, то жидкость не остынет и ночью, когда нагрева нет. С целью экономии можно рискнуть и подключить помпу напрямую к солнечной панели без конвертера, но это способно повредить ее мотору.

Подключение для быстрого прогрева малого объема воды


Если вода используется небольшими объемами по пару литров за раз, то систему можно сделать вообще без насоса. Для этого потребуется:
  • солнечная панель;
  • автоматический конвертер напряжения;
  • электронный термостат с датчиком;
  • электромагнитный клапан для воды.

Данная система подразумевает размещение бака с водой на возвышении, выше коллектора. На выход змеевика устанавливается электромагнитный клапан, который управляется термостатом.



При этом датчик последнего подключается прямо возле слива змеевика. Естественно между солнечной панелью и всем оборудованием требуется установка конвертера напряжения.

В таком случае, как только вода в змеевике достигнет температуры реагирования термостата, тот подаст напряжение на клапан, от чего откроется слив из коллектора. Жидкость будет сливаться самотеком со змеевика в другую утепленную как термос емкость. Как только потечет холодная вода, термостат отключит питание клапана и тот перекроется.

Таким образом, горячая вода в утепленную емкость будет сливаться периодически по мере прогрева. Это позволит ее получать в малых объемах, но зато разогретую до высоких температур быстро, а не за 3-4 часа. Главное, чтобы накопительная емкость была эффективна как термос, и жидкость в ней не остывала. Периодически из нижнего бачка можно сливать по пару литров для мойки посуды, мытья рук и т.д.

Смотрите видео


Солнечный коллектор своими руками для отопления дома

Различные солнечные коллекторы появились на рынке достаточно давно. Это устройства, использующие энергию солнца для нагрева воды на домашние нужды. Но приобрести популярность среди пользователей им мешает высокая стоимость, это беда всех альтернативных источников энергии. Например, общие затраты на приобретение и монтаж установки, что обеспечит нужды средней семьи, составят 5000$. Но выход есть: можно сделать солнечный коллектор своими руками из доступных по цене материалов. Какими способами это реализовать, будет рассказано в данном материале.

Как работает солнечный коллектор?

Принцип действия коллектора основан на поглощении (абсорбции) тепловой энергии солнца специальным приемным устройством и передачей его с минимальными потерями теплоносителю. В качестве приемника используются медные или стеклянные трубки, окрашенные в черный цвет.

Ведь известно, что лучше всего абсорбируют тепло предметы, имеющие темную или черную окраску. Теплоносителем чаще всего выступает вода, иногда – воздух. По конструкции солнечные коллекторы для отопления дома и горячего водоснабжения бывают таких видов:

  • воздушные;
  • водяные плоские;
  • водяные вакуумные.

Среди прочих воздушный солнечный коллектор отличается простотой конструкции и, соответственно, самой низкой ценой. Он представляет собой панель – приемник солнечной радиации из металла, заключенный в герметичный корпус. Стальной лист для лучшей теплоотдачи снабжен с задней стороны ребрами и уложен на дно с тепловой изоляцией. Спереди установлено прозрачное стекло, а по бокам корпуса имеются проемы с фланцами для подключения воздуховодов или других панелей, как показано на схеме:

Воздух, поступающий через проем с одной стороны, проходит между стальными ребрами и, получив от них тепло, выходит с другой.

Надо сказать, что установка солнечных коллекторов с нагревом воздуха имеет свои особенности. Из-за их невысокой эффективности для обогрева помещений нужно применять несколько подобных панелей, объединенных в батарею. Кроме того, обязательно понадобится вентилятор, поскольку нагретый воздух из коллекторов, находящихся на кровле, самостоятельно вниз не пойдет.

Принципиальная схема воздушной системы показана ниже на рисунке:

Простое устройство и принцип работы позволяют выполнять изготовление коллекторов воздушного типа своими руками. Но потребуется много материала для нескольких коллекторов, а подогреть воду с их помощью все равно не получится. По этим причинам домашние умельцы предпочитают заниматься водяными нагревателями.

Конструкция плоского коллектора

Для самостоятельного изготовления наибольший интерес представляют плоские солнечные коллекторы, предназначенные для нагрева воды. В корпусе из металла или алюминиевого сплава прямоугольной формы размещен тепловой приемник — пластина с запрессованным в ней змеевиком из медной трубки. Приемник выполняется из алюминия или меди, покрытой абсорбционным слоем черного цвета. Как и в предыдущем варианте, снизу пластина отделена от дна слоем теплоизоляционного материала, а роль крышки играет прочное стекло или поликарбонат. Ниже на рисунке изображено устройство солнечного коллектора:

Пластина черного цвета поглощает тепло и передает его теплоносителю, движущемуся по трубкам (вода или антифриз). Стекло выполняет 2 функции: пропускает к теплообменнику солнечную радиацию и служит защитой от осадков и ветра, снижающих производительность нагревателя. Все соединения выполнены герметично, чтобы внутрь не попадала пыль и стекло не теряло прозрачности. Опять же, тепло солнечных лучей не должно выветриваться наружным воздухом через щели, от этого зависит эффективная работа солнечного коллектора.

Данный вид – самый популярный среди покупателей из-за оптимального соотношения цена — качество, а среди домашних мастеров — по причине относительно несложной конструкции. Но применять такой коллектор для отопления можно лишь в южных регионах, с понижением температуры наружного воздуха его производительность значительно падает из-за высоких тепловых потерь через корпус.

Устройство вакуумного коллектора

Еще один вид водяных солнечных нагревателей изготавливается с применением современных технологий и передовых технических решений, а потому относится к высокой ценовой категории. Таких решений в коллекторе реализовано два:

  • тепловая изоляция с помощью вакуума;
  • использование энергии парообразования и конденсации вещества, кипящего при низкой температуре.

Идеальный вариант защитить абсорбер для коллектора от тепловых потерь – это заключить его в вакуум. Медная трубка, наполненная хладагентом и покрытая абсорбирующим слоем, помещена внутрь колбы из прочного стекла, воздух из пространства между ними откачан. Концы медной трубки входят в трубу, через которую протекает теплоноситель. Что происходит: хладагент под воздействием солнечных лучей закипает и обращается в пар, он поднимается по трубке вверх и от соприкосновения с теплоносителем сквозь тонкую стенку снова переходит в жидкость. Ниже показана рабочая схема коллектора:

Фокус в том, что в процессе превращения в пар вещество поглощает гораздо больше тепловой энергии, чем при обычном нагреве. Удельная теплота парообразования любой жидкости выше, нежели ее удельная теплоемкость, а потому вакуумные солнечные коллекторы весьма эффективны. Конденсируясь в трубе с проточным теплоносителем, хладагент передает ему всю теплоту, а сам стекает вниз за новой порцией энергии солнца.

Благодаря своему устройству вакуумные нагреватели не боятся низких температур и сохраняют свою работоспособность даже на морозе, а потому могут применяться в северных регионах. Интенсивность нагрева воды в этом случае ниже, чем летом, так как зимой на землю поступает меньше тепла от солнца, часто мешает облачность. Понятно, что изготовить стеклянную колбу с откачанным воздухом в домашних условиях просто нереально.

Примечание. Существуют вакуумные трубки для коллектора, заполняемые напрямую теплоносителем. Их недостаток – последовательное подключение, при выходе из строя одной колбы придется менять весь водонагреватель.

Как изготовить солнечный коллектор?

Прежде чем приступить к работе, следует определиться с габаритами будущего водогрейного аппарата. Произвести точный расчет площади теплообмена непросто, многое зависит от интенсивности солнечного излучения в данном регионе, расположения дома, материала нагревательного контура и так далее.

Правильным будет сказать, что чем больше тепловой коллектор, тем лучше. Однако, его размеры наверняка ограничиваются местом, где планируется его устанавливать. Значит, надо исходить из площади этого места.

Корпус проще всего изготовить из древесины, проложив на дно слой пенопласта или минеральной ваты. Также для этой цели удобно использовать створки старых деревянных окон, где сохранилось хотя бы одно стекло. Выбор материала для приемника тепла неожиданно широк, чего только не используют мастера-умельцы, чтобы собрать коллектор. Вот перечень популярных вариантов:

  • тонкостенные  медные трубки;
  • различные полимерные трубы с тонкими стенками, желательно черного цвета. Хорошо подойдет полиэтиленовая РЕХ труба для водопровода;
  • наружный теплообменник старого холодильника;
  • трубки из алюминия. Правда, соединять их сложнее, чем медные;
  • стальные панельные радиаторы;
  • черный садовый шланг.

Примечание. Кроме перечисленных, существует масса экзотических версий. Например,воздушный солнечный коллектор из пивных банок или пластиковых бутылок. Подобные прототипы отличаются оригинальностью, но требуют значительного вложения труда при сомнительной отдаче.

В собранный деревянный корпус или старую оконную створку с приделанным дном и уложенным утеплителем надо поместить металлический лист, накрывающий всю площадь будущего нагревателя. Хорошо, если найдется лист алюминия, но подойдет и тонкая сталь. Ее необходимо окрасить в черный цвет, а затем уложить трубы в виде змеевика.

Без сомнения, коллектор для нагрева воды лучше всего получится из медных труб, они отлично передают тепло и прослужат долгие годы.Змеевик плотно прикрепляется к металлическому экрану скобами или любым другим доступным способом, наружу выводятся 2 штуцера для подачи воды.

Поскольку это плоский, а не вакуумный коллектор, то поглотитель тепла нужно закрыть сверху светопрозрачной конструкцией – стеклом или поликарбонатом. Последний легче обрабатывается и надежнее в эксплуатации, не разобьется от ударов града.

 

После сборки солнечный коллектор надо установить на место и подключить к накопительному баку для воды. Когда позволяют условия монтажа, то можно организовать естественную циркуляцию воды между баком и нагревателем, в противном случае в систему включается циркуляционный насос.

Заключение

Осуществлять отопление дома солнечными коллекторами, сделанными своими руками, – привлекательная перспектива для многих домовладельцев. Жителям южных районов этот вариант более доступен, только придется заполнить систему антифризом и как следует утеплить корпус. На севере самодельный коллектор поможет нагреть воду на хозяйственные нужды, но для обогрева дома его не хватит. Сказывается холод и короткий световой день.

Солнечный коллектор для нагрева воды своими руками

В этой публикации представлены результаты объемных исследований блогера Сергея Юрко. Показаны 3 солнечных коллектора, изготовленные мастером своими руками и наиболее эффективный из них – так называемый 3 пленочный коллектор, он нагревает воду до 60 градусов. Есть более простой 2 пленочный, и он способен доводить воду до 55 градусов. Самый простой и самый дешевый 1 пленочный, но он обеспечивает прогрев только до 35 или 40 градусов.

Стоимость одного квадратного метра этих примитивных коллекторов примерно в тысячу раз дешевле заводских аналогов, и поэтому возникает вопрос: а что же такого хорошего в фирменных коллекторах, что они стоят в тысячу раз дороже примитивных, которые может изготовить своими руками любой человек за несколько часов, потратив мизерные деньги.

Будем сравнивать простые коллекторы с дорогими заводскими моделями по эффективности, экономической целесообразности и другим характеристикам. И далеко не всегда это сопоставление в пользу заводских устройств. Ролик на тему: сделаем простейшие солнечные коллекторы и посмотрим, на что они способны. А также выясним, при каких случаях имеет смысл отказаться от дешёвого солнечного тепла с этих примитивных конструкций, чтобы заплатив сотни или тысячи раз дороже, получить такой же эффект от более дорогих устройств.

Личный интерес автора ролика к теме основан на предположении, что заводские солнечные коллекторы являются эволюционным тупиком солнечной тепловой энергетики, поскольку, например, солнечные батареи за последние несколько десятилетий подешевели больше чем в сто раз и график показывает процесс снижения цен.
Возникает мысль, что эволюция солнечных коллекторов пошла не по тому пути и поэтому имеет смысл вернуться к самым простым технологиям.

3 простые конструкции коллекторов для нагрева воды от солнца

Черная пленка является единственной, из чего состоит 1-пленочный примитивный коллектор, то есть на пленку наливается вода и очевидно, что во время солнца это вода нагреется. Её можно купить на базаре в любом городе. Мастер приобрел три квадратных метра за 15 гривен. Стоимость коллектора выходит 15 евро цент за квадратный метр.

Но имеет смысл добавить еще одну – прозрачную пленку, которая покроет поверхность нагреваемой воды. Температура нагрева радикально увеличивается, поскольку вторая пленка останавливает испарение воды. Её продают на любом базаре для теплиц и из-за этого второго слоя стоимость коллектора увеличивается до 35 евро центов за квадратный метр.

Но есть еще и 3 пленочный вариант и дополнительная пленка тоже является прозрачной, она увеличит стоимость коллектора до 55 евро центов за квадратный метр.

Функция 3 пленки, как и у стекла заводского плоского коллектора, то есть между стеклом и черным абсорбером формируется слой воздуха толщиной несколько сантиметров, воздух является теплоизолятором.

Сколько пленок нужно для хорошего нагрева воды?

Экспериментальные измерения дали неожиданные результаты, поскольку оказалось что в нашем случае результат применения третьей пленки не является таким эффективным, как в случае заводского плоского коллектора – температура нагрева воды увеличивается, но всего лишь на несколько градусов. Причем наша тройка коллекторов может иметь разные конструкции. К примеру 2 пленочная – прозрачная полиэтиленовая пленка, продается на базарах в виде рукава. Вода заливается внутрь рукава, а роль нижней черной пленки выполняют черная поверхность крыши многоэтажки.

Аналогичное исследование, но с рукавом из не прозрачной, а черной пленки. Если вторая пленка черная, вариант предпочтительнее только при условии хорошей циркуляция воды через систему. Коллектор нагрел 100 литров воды до 66 градусов. Можно заметить несколько усложнений конструкции, в том числе лист пенополистирола толщинoй 3 сантиметра. но эксперименты показали, что теплоизоляция под коллектором увеличит температуру нагрева, но не радикально.

Эксперимент в августе с нагревом воды при температуре воздуха в тени 35 градусов показал, что пленочный коллектор на хорошей теплоизоляции нагрел воду до 63 градусов и в тот же самый момент другой коллектор нагрел воду до 57 градусов, хотя под ним теплоизоляции нет и его первая пленка лежит прямо на земле.

Дополнительные функции кустарного садового коллектора

Также интересно обратить внимание, что однопленочный коллектор во время дождя выполняет функцию сбора дождевой воды что для некоторых домов и местности может оказаться актуальным. кроме этого, 1 пленочные и 2 пленочные коллекторе ночью могут выполнять функцию градирни, то есть они отбирают тепло из воды, используемой для систем охлаждения. Можно использовать в режиме, когда днем через них циркулирует вода, которую нужно нагревать. а ночью коллектор охлаждает воду баков. днем вода из них используется для отбора тепла. в результате чего она нагревается. и поэтому следующей ночью ее нужно опять охлаждать коллекторами.

Интересно заметить, что высота воды в коллекторах может превышать несколько сантиметров. они являются одновременно и солнечным коллекторам и баком для горячей воды. То есть они работают как хорошо известная черная бочка на летнем душе.

Но очевидно, что после исчезновения солнца вода в коллекторе охлаждается. Для этого случая может оказаться интересным коллектор с тремя слоями пленки, вода в котором охлаждается медленно.

На фото. Стоимость заводских тепловых коллекторов в тысячу раз дороже представленных самодельных.

Статистика по измерениям эффективности самодельных и заводских солнечных нагревателей

1 августа проводил эксперимент по измерению производительности 2 пленочного коллектора. На протяжении солнечного дня измерял температуру воды и заносил в таблицу.

насколько эффективен нагреватель воды с пленкой

В следующий таблице интерпретация полученных результатов, в столбце количество теплоты, которую реально производил коллектор.

Описано в примечании фото, как рассчитывалось по результатам измерений температуры. В другом столбце количество солнечной радиации, которая попала на солнечный коллектор. причем важно заметить, что она зависит от угла солнца над горизонтом, точнее от синуса этого угла.

Интересно, что в данный временной промежуток производство тепла коллектором было больше, чем количество солнечной радиации. но никакого парадокса нет, если обратить внимание на разницу температур. В это время температура воздуха была больше, чем воды в коллекторе, и поэтому она нагревалась не только из-за поглощения солнечной радиации, но и вследствие нагрева от более теплого воздуха. но в другие временные промежутки вода была уже теплее воздуха. причем, чем больше разница температур, тем больше тепловые утечки из воды в окружающий воздух. тем меньше полезного тепла производят коллектор. Можно прийти к выводу, что как только температура воды достигнет примерно 60 градусов, она прекратит нагреваться, поскольку упомянутые тепловые утечки сравняются с поступлением энергии Солнца в коллектор.

В правом крайнем столбце таблицы зафиксирована измеренная мощность нагрева коллектора на единицу площади, ее можно сравнить с столбцом с мощностью нагрева одного квадратного метра заводского коллектора в тех же условиях. Описано, как вычислял мощности. Один квадратный метр заводской модели имеет преимущество над такой же площадью самодельного только при работе на высоких температурах воды. а если нужно греть воду с температурой выше 60-70 градусов, то кустарный коллектор не сможет работать вообще. в то же время 1 квадратный метр самодельного теплообменника произведет тепла заметно больше, чем один квадратный метр фабричного, когда температура воды меньше температуры окружающего воздуха.

Результаты объясняются энергетическими характеристиками 2 пленочного коллектора.


А это оценка характеристик других типа примитивных нагревателей.

Приблизительные характеристики заводских плоских коллекторов, представленных в паспорте.

В интернете можно найти такие характеристики практически для любой марки. По таблице видно, что фирменный обменник тепла имеет преимущество по этому коэффициенту, благодаря чему он способен работать на высоких температурах. но с другой стороны самопальный коллектор работает намного лучше заводского в случае, если нужно подогреть воду с температурой ниже воздуха. Например, если нужно нагревать 10 градусную воду подземной скважины во время 30-градусной жары. дело в том, что коэффициент корректнее называть не тепловыми потерями, а коэффициентом теплообмена. Поскольку если вода в коллекторе холоднее воздуха, то в коллекторе нет тепловых потерь, а наоборот, из более теплого воздуха в него поступает дополнительное тепло. Данный коэффициент интерпретируется так, что если разница температур между водой и воздухом увеличивается на 1 градус, то обмен тепла через каждый квадратный метр коллектора увеличивается на 20 ватт.

Эта характеристика (оптический КПД) показывает кпд преобразования солнечной радиации в полезное тепло в условиях, когда температура теплоносителя в коллекторе равна температуре окружающего среды. В примечании описано, почему у простейших коллекторов этот показатель немного лучше, чем у заводских. Но это указан кпд нового чистого коллектора, а примитивные очень чувствительны к грязи. Текст ниже описывает, как много грязи накапливается в них течение эксплуатации.

Грязь и пузырьки в простых самодельных коллекторах

* В воду 1-пленочного коллектора извне приходит очень много разнообразной грязи. В 2-х и 3-пленочных устройствах эта проблема выражается в пылевом налете на верхней пленке, и после высыхания воды дождя или росы эта грязь группируется в непрозрачные пятна, которые могут очень заметно уменьшить КПД коллектора. Но с другой стороны, есть несколько несложных способов удалять эту грязь после дождя.
* Из воды тоже выпадает много грязи в виде мелких хлопьев на поверхности воды или крупных хлопьев на дне. Эти выпадения усиливаются из-за нагрева воды.
* Также накапливается «белый налет» (на верху 1-й и низу 2-й пленки), который заметно снижает КПД. Он прикрепляется к пленкам очень прочно, т.е. потоком воды не удаляется (и щеткой он оттирается с большим трудом и не полностью). Возможно, это выпадение солей из нагретой воды, возможно, это последствия разложения полиэтиленовых пленок.
* Часть грязи в коллекторе может быть объяснена продуктами разложения полиэтилена вследствие УФ-радиации и высокой температуры. Обычно полиэтилен разлагается на перекись водорода, альдегиды и кетоны. В основном, это газы или жидкости, хорошо растворимые в воде. т.е. в осадок они вроде бы не должны выпадать.
* КПД коллектора также снижается из-за большого количества газовых пузырьков (диаметром до нескольких миллиметров на верху 1-й и низу 2-й пленки), которые выделяются при нагреве воды (При нагреве уменьшается растворимость газов в воде). Интересно, что при расположении коллектора на земле на его 1-й пленке пузырьков практически нет (но они есть на низу 2-й)
* Под 2-й пленкой могут образовываться большие пузыри, а также воздух в складках. Эти участки быстро запотевают, и это уменьшает КПД.
* На краях коллектора 2-я пленка может не прилегать к воде: на таких участках низ запотевает и поэтому плохо пропускает солнечную радиацию.
* В 3-пленочных коллекторах могут быть запотевания низа 3-й пленки. Это случается при неправильной установке 2-й пленки (из-за чего пар из коллектора может проникать под 3-ю пленку) или из-за её повреждений. В таких случаях нужно устанавливать 3-ю пленку так, чтобы ветер слегка вентилировал пространство между нею и 3 слоем.

Загрязнение воды коллекторов из-за разложения полиэтиленовых пленок

Это разложение будет из-за одновременного воздействия кислорода воздуха, ультрафиолетовой солнечной радиации и температуры 50-60 град. Полиэтилен разлагается на альдегиды, кетоны, перекись водорода и др.
При нагреве в коллекторе каждого 1 куб. м воды его полиэтиленовые пленки будут выделять порядка 1 г продуктов разложения (На 1 кв. м коллектора приходится около 100 г 1-й и 2-й пленок, и за время своей службы они выделят, по очень приблизительным оценкам, около 10 г «продуктов разложения» и нагреют порядка 10 куб. м воды). Но непонятно, сколько из этих 1 мг/ литр перейдет в воду, а сколько улетит в атмосферу, выпадет в осадок на дне коллектора и бака горячей воды, перейдет в тот «белый налет» (о котором я говорил в предыдущем тексте), не выйдет за пределы массы полиэтилена
Кроме того, непонятно благоприятное влияние на очистку воды вследствие ее пребывания и нагрева в коллекторе (а там из нее выпадает очень много осадка), а также вследствие пребывания в баке горячей воды. Таким образом, по приблизительным оценкам, в воду поступит 0,1-0.5 мг / литр продуктов разложения полиэтилена, которые распределятся между десятками хим. веществ с концентрациями по 0.001-0,1 мг на литр нагреваемой воды. Поскольку это недалеко от ПДК вредных веществ, консультация с СЭС лишней не будет. Например, согласно стандарту ГН 2.1.5.689-98 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»:
– Есть ограничения по 13 шт. альдегидов – ПДК от 0,003 мг / литр до 1 мг / литр, например, ПДК формальдегида – 0.05 мг / литр, а самые жесткие требования к бензальдегиду – 0.003 мг / литр
– ПДК перекиси водорода – 0,1 мг / литр
– По 3 шт. экзотических кетонов тоже есть ограничения с ПДК 0,1-1,0 мг / литр

Выводы:

1) Если вода «застоялась» коллекторах, то концентрация «продуктов разложения» в ней будет в разы или десятки раз больше. Возможно, такую воду лучше выбрасывать.
2) Желательно использовать более тонкие пленки (они будут давать меньше «продуктов разложения»).
3) Пленки желательно как можно стабилизированные. Например, тепличная предпочтительнее обычной (не подкрашенной) полиэтиленовой, она стабилизируется против воздействия УФ-радиации. Другой пример: полиэтилен высокой плотности медленнее разлагается из-за высокой температуры, чем низкой плотности.
4) Отношение площади коллекторов к потребности объекта (в горячей воде) желательно как можно меньше. Т.е., например, при суточной потребности 10 куб. м горячей воды, станция с 50 кв.м. коллекторов дает загрязнение (концентрация вредных веществ) воды в десятки раз меньше, чем станция с 500 кв.м. коллекторов, в том числе и из-за более низкой температуры нагрева воды коллекторами, что уменьшает скорость разложения полиэтилена.
5) Если 2-я пленка коллекторов будет черная (а не прозрачная), то загрязнение воды должно быть в разы меньше (поскольку УФ-излучение проникает только в верхний слой 2-й пленки).
6) Можно подумать над таким вариантом работы солнечной станции, когда коллекторы нагревают
техническую воду, которая затем передает свое тепло через теплообменник чистой воде ГВС.

Какую лучше применять пленку для сбора солнечного тепла – черную или прозрачную ?

Оптический кпд заметно уменьшается из-за воздушных пузырьков и запотевания второго слоя пленки коллектора. это к тому, что кпд реально эксплуатируемого устройства по всему сроку эксплуатации окажется на несколько десятков процентов меньше. Поэтому не имеет смысла стремиться к дорогим пленкам с большой долговечностью, поскольку за несколько месяцев эксплуатации на них накопится столько грязи, что пленки захочется заменить. Из-за таких проблем с разнообразной грязью склоняемся к тому, что 2 пленка должна быть все таки непрозрачной, а черной.

У этого коллектора черная пленка и нет радикального уменьшения кпд из-за грязи. Но у него есть проблема – солнце нагревает только тонкий верхний слой воды. Тем не менее существует несколько вариантов решения проблемы, которые будут получены после исследований.

Важно иметь ввиду что ветер увеличивает коэффициент теплопотерь примитивных коллекторов, а в случае однопленочного это влияние ветра может быть радикальным, так как увеличиваются потери тепла из коллектора вследствие испарения воды и может дойти до того, что даже в идеально солнечный день, но при сильном ветре и низкой влажности 1-пленочный сможет нагреть воду только на несколько градусов выше температуры окружающего воздуха. Кроме этого коэффициент к1 нужно увеличить на несколько десятков процентов, если под коллектором нет теплоизоляции и он лежит непосредственно на земле, на поверхности крыши и тому подобное.

Во 2 серии этого фильма сравниваются примитивные и заводские коллекторы по темам работы зимой, простоте подключения, экономической целесообразности, областям применения на практике.

Обсуждение здесь.

Вторая часть (о работе зимой)


3, 4 серии (техобслуживание)

Другие ссылки:
– Конструкция и технология того сверх дешевого солнечного нагревателя:


– Эксперимент с заливкой воды в рукав полиэтиленовой пленки:

Солнечный Коллектор для Нагрева Воды Своими Руками

ЭкономияSavedRemoved 2

Нагрев воды на даче – проблема стоящая практически перед каждым из дачников. Конечно же, можно поставить емкость с водой прямо на солнце. Но время ожидания результата растянется на многие часы. В нашей статье мы расскажем, как сделать солнечный коллектор для нагрева воды своими руками. Такой коллектор существенно сократит время нагрева воды, а применение солнечной батареи позволит не тратить деньги на электроэнергию.

Читайте также: Как пробурить скважину на воду своими руками? Описание, обустройство (Фото & Видео)

Материалы для изготовления

Для того, чтобы сделать солнечный коллектор, вам понадобятся:

  • радиатор охлаждения от старого холодильника;
  • влагостойкая фанера;
  • деревянные бруски;
  • теплоизоляционная фольга;
  • стрейч или оргстекло;
  • обычный и двусторонний скотч;
  • тонкий силиконовый шланг;
  • погружной водяной насос на 12 В, 5 Вт;
  • автоматический конвертер напряжения;
  • солнечная панель SP-12 на 25 Вт;
  • паяльник;
  • изолированные провода;
  • мультиметр.

Шаг 1. Делаем корпус коллектора

1

Из брусков делаем каркас корпуса коллектора по размеру радиатора охлаждения холодильника.

2

Дно корпуса делаем из влагостойкой фанеры и застилаем его теплоизоляционной фольгой.

Источник: https://youtu.be/uGEBbzyXdhI

Фольгу лучше вырезать с загибом на бортики и приклеить на двусторонний скотч.

3

В брусках делаем отверстия под выходы змеевика радиатора.

4

Устанавливаем радиатор в корпус, выводя змеевик через отверстия в брусках.

Источник: https://youtu.be/uGEBbzyXdhI

5

Конденсатор радиатора прикрепляем к корпусу скотчем.

6

В идеале корпус коллектора нужно накрыть оргстеклом, но за неимением последнего можно обойтись 3-4 слоями стрейча.

Источник: https://youtu.be/uGEBbzyXdhI

Для увеличения КПД коллектора, поверхность стрейча должна быть как можно ровнее.

7

Для удобства переноски и установки приделаем к корпусу ручки.

Источник: https://youtu.be/uGEBbzyXdhI

Шаг 2. Собираем систему подачи воды

1

Подсоединяем к змеевику тонкий силиконовый шланг. Если он находит неплотно, подматываем изоленту.

Источник: https://youtu.be/uGEBbzyXdhI

2

Второй конец шланга подсоединяем к выходу насоса.

Источник: https://youtu.be/uGEBbzyXdhI

Насос можно брать небольшой производительности (≈ 250 литров в час), главное, чтобы он поднимал воду на нужную высоту (в примере – 3 м).

3

Для защиты насоса, питание на него будем подавать от солнечной батареи через конвертер по следующей схеме.

Источник: https://youtu.be/uGEBbzyXdhI

4

Подпаиваем провода к конвертеру и настраиваем на выходе 12 В.

Источник: https://youtu.be/uGEBbzyXdhI

5

Для удобства в эксплуатации, к входным проводам конвертера и выходным проводам солнечной батареи подпаиваем коннекторы.

Источник: https://youtu.be/uGEBbzyXdhI

Шаг 3. Проводим испытание

1

Подключаем конвертер к солнечной батарее и проверяем напряжение на его выходе. Оно должно быть 12 В.

2

Подключаем насос и опускаем его на дно емкости с холодной водой (21 градус Цельсия).

3

Солнечный коллектор располагаем так, чтобы он был максимально повернут к лучам солнца.

Источник: https://youtu.be/uGEBbzyXdhI

4

Через какое-то время работы коллектора, температура воды в баке достигает 40 градусов Цельсия.

Источник: https://youtu.be/uGEBbzyXdhI

Можно, также подключить коллектор без насоса, поставив бак с водой на возвышение и оборудовав электромагнитным клапаном и электронным термостатом с датчиком. Тогда теплая вода будет периодически сбегать в дополнительную емкость. Но КПД такой установки значительно ниже, чем у описанной выше, что не скажешь о затратах на ее реализацию.

Оценки покупателей: Будьте первым!

Сравнение лучших строительных конструкций солнечных коллекторов горячего воздуха своими руками

Горячий Коллекторы воздуха — Выбор лучший


Есть есть много различных конструкций солнечных коллекторов горячего воздуха на выбор откуда, но какая лучше?

Это кажется простым вопросом. Если температура на выходе моего коллектора горячее твоего, должно быть лучше, правда? Не очень быстро ! Есть множество людей, особенно на YouTube, рекламируют действительно высокие показатели производительности своими проектами, но если вы продуть через свои коллекторы больше, чем глоток воздуха, их выход температура может упасть как скала!

Вдоль с повышением температуры есть еще одна не менее важная переменная.Это количество воздуха, проходящего через коллектор, которое обычно измеряется в кубических футах в минуту (CFM).

В основные термины, если мой коллекционер такой же горячий, как ваш, но у вас в два раза больше воздух, проходящий через ваш коллектор, ваш тоже работает дважды! Если я увеличу поток воздуха до уровня твоего, моя температура повысится будет только половиной того, что у вас есть.

Оба повышение температуры и воздушный поток являются неотъемлемой частью сравнения коллекторов горячего воздуха . Это действительно важная концепция, о которой нужно помнить. В виде как только кто-то скажет вам, насколько горячим их коллекционер, первый Вам должно быть интересно, через сколько воздуха они проходят Это. Если не много, то жаркие температуры, которые они рекламируют ничего не значат. Тот же принцип применяется к водосборникам. тоже.

в в этот момент вы можете подумать, что пока мы измеряем нашу температуру Поднимитесь и отрегулируйте поток воздуха, это должно быть легко сравнить коллекционер спектаклей.Опять же не так быстро! Мы учли для двух самых больших переменных, но ни в коем случае не для всех. Вот еще несколько:

— Даже в совершенно солнечные дни высокие тонкие облака которые практически невидимы, могут довольно сильно изменять интенсивность солнца. немного.
— У меня на улице может быть холоднее дома, чем ваш, что немного влияет на производительность.
— Коллекционеры могут быть по разным углы наклона или не совсем в одном направлении, что также влияет на интенсивность солнечного света, падая на коллектор.
— Оно в вашем доме может быть более ветрено, отводит больше тепла от остекления

единственный надежный способ определить производительность одного коллектора другому — сравнивать их бок о бок в идентичных условиях.

Гэри Resa из www.builditsolar.com в Монтане, и я, здесь, в Мэриленде, намеревались сделать это в совместные усилия. Вот фотография моего тестового сборщика, состоящего из из трех отсеков 4 х 8 футов.Каждый отсек имеет герметичное разделение от других, и каждый питается индивидуально.


Моя трехсекционный тестовый коллектор (экран еще не установлен в отсеке 1)

Это просто потрясающе! Здесь мы в 21 веке и есть еще тонн плодородной почвы для экспериментов солнечным любителем / энтузиаст. Есть много дизайнов и материалов, которые стоит попробовать и возможность учиться и вносить свой вклад к искусству и науке DIY-солнечной энергии!

Энтузиасты других областей интересов, таких как астрономия на заднем дворе или любительское радио, десятилетиями помогают продвигать эти дисциплины как на любительском, так и на профессиональном уровне.Между тем, солнечная энергия — это одинаково весело, интересно, очевидно, необходимо, дешевле в освоении и на самом деле многократно окупает ваши инвестиции; тем не менее, повсюду есть возможности для любителей солнечной энергии на заднем дворе! Кроме того, доступны налоговые льготы. В то время как налоговое законодательство обычно меняется каждый год, большинство пакетов программного обеспечения для подготовки личных налогов автоматически оснащены для этого. Если вы заинтересованы в экспериментах с солнечной батареей, присоединяйтесь к нам. Ваши идеи могут иметь значение в большем масштабе, чем вы можете себе представить, и вы получите много удовольствия на этом пути!

Раньше мои рекомендации — сначала несколько предисловий

Мы практически не затронули процесс тестирования.По факту, мы все еще ищем лучшие способы проведения тестов, а тем более пробовать различные варианты наших нынешних типов поглотителей. Тогда у нас есть бесчисленное множество других материалов, которые стоит попробовать. Подробнее люди, тестирующие различные конструкции или подтверждающие наши тесты, быть чрезвычайно полезным в продвижении процесса вперед! Итак, вам может быть интересно почему я уже предлагаю некоторые выводы и рекомендации. Там Причин несколько: 1. Этот процесс тестирования может занять всю жизнь в течение нескольких из нас Прямо сейчас только двое или трое из нас делают эти тесты. Если люди будут ждать «окончательного» ответа, они никогда ничего не построят. Это как ждать, чтобы купить компьютер, пока процессоры не перестанут становиться лучше — у тебя никогда не будет! 2. Пока у нас чертовски много предстоящих испытаний, мы собрали хотя бы некоторые разумные данные о прямом сравнительном тестировании с четырьмя различные, популярные, коллекционные конструкции, — обратный эталонный коллектор, пустой ящик, вентилируемый потолок и коллектор из стекловолокна.К тому же, пока у нас нет параллельных сравнительных данных, у нас есть очень хорошие данные по 5-й конструкции — алюминиевой водосточной трубе, составленные в основном Скоттом S и, в меньшей степени, я. Также у нас есть кое-что из первых рук опыт построения различных коллекторов и оценка их расходы. Это хорошие окончательные данные, которые помогают сделать наши выводы на данный момент. 3. Я продолжаю получать много писем по электронной почте с просьбой предоставить данные о производительности. обновления и рекомендации по дизайну от людей, которые хотят начать их коллекционеры.Им интересно, что я бы порекомендовал сейчас, исходя из того, мы узнали до сих пор.

Текущий Рекомендации

Несколько из вас могут быть весьма заинтересованы в деталях тестирования и Я включил их ниже, но для тех, кому интересно выводы и рекомендации на данный момент, если бы кто-то спросил меня сегодня какой тип коллектора горячего воздуха я бы рекомендовал построить, я бы ответьте им так:

Для традиционного дизайна 4 ‘X 8’ я бы построил коллектор с двух- или трехслойным алюминиевый оконный экран.

— Лучшая сравнительная характеристика
— На сегодняшний день наименее дорогая (25-футовый рулон шириной 4 фута, алюминиевый экран всего около 29 долларов в Home Depot). Экран из стекловолокна ровный дешевле и отлично работает, но мы не уверены в краске при действительно высоких температурах.
— Самая простая и быстрая сборка на сегодняшний день
— Самый низкий перепад давления (наименьшее сопротивление воздушному потоку, кроме черного коробка) Это означает, что вы можете получить больший воздушный поток для большей эффективности, чем вы столкнетесь с вентилятором того же размера и другими типами коллектора.

Здесь Вот несколько примеров того, как построить сборщик экрана:

Мой двухслойный сборщик экрана: http://groups.yahoo.com/group/SimplySolar/photos/album/1082811597/pic/list?mode=tn&order=ordinal&start=1&dir=asc

Гэри Трехслойный коллектор Resa: http://www.builditsolar.com/Experimental/AirColTesting/ScreenCollector/Building.htm

Видео на YouTube детали конструкции поглотителя экрана:


Для длинного низкого коллектора я бы сделал алюминиевый водосточный желоб.

— Хороший исполнитель. У нас нет рядом сравнительных показатели производительности, однако, Скотт С. сделал очень подробные измерения и расчеты, которые показывают проектные работы по алюминиевому водостоку действительно хорошо. Вы найдете полную информацию о конструкции и Данные Скотта, документирующие характеристики, приведены в нижней части страницы здесь: http://www.n3fjp.com/solar/solarhotair.htm
— Очень легко построить
— Материал водосточной трубы подходит для длинной и низкой конструкции.Это дает практически неограниченную гибкость в проектировании. параметры.

Видео на YouTube с подробным описанием конструкция солнечного коллектора с водосточной трубой из алюминия:


Хотя это тоже хорошие характеристики, я бы отговорил людей от конструкции обратного канала из-за чрезвычайно высокого падения давления.

Я бы определенно отвел людей от черного ящика из-за плохой сравнительной производительности.

Вентилируемый потолок выглядит очень хорошо, а также хороший выбор. Однако я бы выбрал экран, потому что экран работает немного лучше, это намного дешевле, проще и быстрее строить.

Итак, вот оно. Основываясь на том, что я знаю сегодня, это мои рекомендации.

Нам есть чему поучиться. Кто знает, что может появиться в будущем, но если вы планируете построить коллектор, не ждите. Экран коллекторы водосточной трубы легко построить, и они отлично работают.В это время, чем дольше вы ждете, тем больше солнечных дней проходит, прежде чем вы когда-либо имейте коллекционер, чтобы они сияли. Любые коллектор будет работать бесконечно лучше чем никакой коллектор!

Что о алюминиевых водосточных коллекторах по сравнению с экраном?

Вопросов все время вспоминают, как сравнивают алюминиевые водосточные трубы сборщикам экрана. Алюминиевый водосточный коллектор это супер дизайн, который стал очень популярным.Там было много хороших отчетов о конструкции водосточной трубы, я думаю в часть, потому что коллектор водосточной трубы имеет много ингредиентов удачный дизайн:

— Он удерживает нагретый воздух, содержащийся в водосточных трубах, на удалении от остекления. Не смешивается с воздухом за пределами водосточных труб внутри коллектор на всех

— Возле остекления совсем нет движущегося воздуха

— Водосточная труба полностью охватывает воздушный поток, поэтому для воздуха остается много площади теплопередачи, по сравнению с

— Его очень легко запечатать, поэтому нет проникновения наружного воздуха


я не проводилось параллельного тестирования коллектора водосточной трубы по сравнению с скрин в моем тестовом сборщике.Я думал об этом, но потом понял, что конфигурация в сборщике тестов не будет репрезентативной как люди строят длинную невысокую конструкцию с водосточными трубами. Оба дизайна Работа отлично, поэтому я думаю, что выбор сводится к размерам коллектор, который вы планируете построить. Я бы выбрал водосточный коллектор для длинный коллектор и экран для высокого коллектора.


Тестирование Детали

Гэри Resa из www.builditsolar.com и я работал над этим проектом совместными усилиями. Нам бы хотелось, чтобы вы присоединились к нам! Вот ссылка на детали и результаты теста Гэри:

http://www.builditsolar.com/Experimental/AirColTesting/Index.htm

Мои такие следует:

Вот YouTube Видео с обобщением характеристик высокопроизводительного, горячего коллектор и наши результаты:

:

Испытательное помещение — Использование справочника для сравнения:

Как объяснено выше, есть множество переменных, которые проводят параллельное тестирование проблема, но мы с Гэри хотели придумать способ для людей которые географически отделены друг от друга, чтобы иметь возможность вносить свой вклад со значимыми, сравнительными данными.Мы также хотели иметь базовый уровень для сравнения различных дизайнов в наших местах на разных дни и неизбежно разные условия.

Что мы решили нужно было для каждой построить базовый, сборщик ссылок, который легко дублируется, поэтому относительная производительность должна быть идентична. Сборщик ссылок никогда не будет изменен. разное коллекционеры будут работать против эталонного стандарта бок о бок боковые испытания, сравниваются первичный результат — повышение температуры.Другими словами, если эталонный эталон повышает температуру 50 градусов и коллектор B поднимает температуру на 60 градусов с такой же воздушный поток, можно сказать, что коллектор B превосходит эталонный стандарт на 20% (10/50).

В настоящее время мы используют схему обратного прохода для сборщика ссылок, задокументированную подробно на сайте Гэри. Обратный проход работает хорошо, но мы рассматриваем возможность выбора другой ссылки конструкция, потому что обратный проход требует гораздо большего давления для перемещения воздух, чем другие конструкции.

Расход воздуха

С точным датчики, измеряющие температуру на входе и выходе из коллектора это просто. Другое дело — измерение расхода воздуха. Мы пробовали тесты мешков, измеряя напряжение компьютерных вентиляторов и вставляя анемометр в поток воздуха. Сумка-тест может быть наиболее точным, но это не вариант для моей конфигурации Вот. Эти два коротких видео показывают, как я балансирую поток:

я Я также вставляю анемометр Kestrel в воздушный поток в качестве дополнительного проверьте воздушный поток.

Результаты Пока

Так далеко, я сравнил эталонный обратный проход со стекловолоконным экраном и вентилируемые конструкции софитов здесь. Кроме того, Гэри также сравнил черный ящик и получил данные для этого. Усреднение измерений Вот мои результаты по стандарту обратного прохода за два дня, экран из стекловолокна и вентилируемый потолок:

Итак, двухслойный сетчатый коллектор из стекловолокна превосходит обратный проход в среднем на 7.5%, что дает явное преимущество перед эталонный обратный канал и вентилируемый коллектор софита. К тому же, это был самый простой, быстрый и дешевый сборщик сделать.

Это где мы так далеко. Я надеюсь обновить эту страницу как дополнительную проводятся тесты. Прямо сейчас коллектор экрана из стекловолокна это поглотитель тепла бить. Ты думаешь, ты сможешь подойти с дизайном, который может? Я бы хотел увидеть, как вы это делаете! Принести это дальше, мы все победим !!!

Если вы заинтересованы в мозговом штурме и тестировании солнечных проектов, или вы новичок в солнечной энергии и хотите начать работу, мы бы хотели, чтобы вы подписались:

SimplySolar — Солнечная энергия Форум и электронная почта!

Это оказывается, есть и другие люди вроде меня, которым тоже нравится делиться идеями и учиться на опытах друг друга! Если вас интересует мозговой штурм солнечные проекты, которые легко и недорого построить и дружелюбный по соседству, или вам нужна помощь с проектом, который у вас есть в процессе, присоединяйтесь к нам!

Изначально для этой цели я создал группу электронной почты SimplySolar.Группа электронной почты сослужила нам хорошую службу, но рост и интерес к группе электронной почты, чтобы лучше сохранить содержание организованы и дают участникам возможность легко следовать только темы, которые их интересуют, мы только что создали новый Simply Solar он-лайн форум! SimplySolar — это мозговой штурм и обмен способов использования солнечного тепла в простые способы, которыми средний домовладелец, который, возможно, не очень «Сделай сам» (например, я), может использовать, чтобы положить деньги обратно в карманы, зеленый вернуться в окружающую среду и весело провести время! Если солнечная энергия волнует вас, мы будем рады, если вы присоединитесь к нашему форуму:

Нажмите посетить или присоединиться к Форуму Simply Solar

или подпишитесь в нашу электронную почту!

Нажмите, чтобы присоединиться к SimplySolar

Как сделать солнечный коллектор своими руками

Самодельный солнечный коллектор — хорошее решение для тех, кто хочет сэкономить деньги, потраченные на центральное отопление, а также на нагрев воды.Обе затраты продолжают расти из-за роста цен на топливо. Нормы выбросов газа также важны для отопления. Все это вызывает у людей больший интерес к возобновляемым источникам энергии. Ветряные турбины, тепловые насосы и солнечные энергетические системы, такие как фотоэлектрические панели и солнечные коллекторы, являются важной частью повседневной жизни многих людей. Бытовая ветряная турбина может быть очень эффективным источником энергии, хотя для этого требуется несколько особых условий окружающей среды и значительные вложения денег.То же самое и с тепловыми насосами — на них нужно много денег, и только через много лет они могут приносить прибыль. Другое дело устройства, использующие солнечную энергию, поскольку производство материалов, поглощающих солнечную энергию, стало намного более прибыльным. Современные решения отличаются повышенным поглощением солнечной энергии. Излучение солнца может быть преобразовано в электрическую энергию через фотоэлементы. Электроэнергия, произведенная таким образом, является очень универсальным источником энергии и может использоваться во многих устройствах — для прямого нагрева воды с помощью нагревателя или ее можно накапливать в аккумуляторах.Добавление инвертора позволяет запитывать бытовую технику, но помните, что со временем аккумуляторы теряют свои свойства, а для хранения большего количества энергии требуется не один, а от нескольких до десятка аккумуляторов. Еще одна вещь, на которую стоит обратить внимание, это то, что со временем фотоэлектрические панели постепенно теряют свою эффективность.

Солнечные коллекторы, поддерживающие нагрев воды, кажутся одним из самых надежных способов получения бесплатной энергии. Уровень инсоляции в вашем районе может составлять, например, 60% годовой потребности в горячей воде.Средняя стоимость установки тканевого комплекта солнечных панелей — довольно значительная статья в семейном бюджете. Когда вы решите купить солнечные батареи, следует учитывать несколько особенностей. Один из них — очень важный параметр солнечных панелей — ее эффективность. Поверхность коллекторов следует выбирать тщательно, чтобы летом она не выделяла лишней энергии. Оптимальным решением этой проблемы является использование теплового буфера, который позволяет сохранять тепло. Однако он должен соответствовать вашим потребностям, чтобы члены семьи могли использовать накопленное в нем тепло.В каждом буфере, даже самом лучшем, есть определенное количество тепла, которое безвозвратно теряется.

Схема простой солнечной установки

На рисунке выше представлена ​​базовая установка системы поддержки водяного отопления с помощью солнечных батарей. Холодная вода перекачивается из бака (бойлера) на солнечную батарею, в которой нагревается солнечными лучами. Затем горячая вода перекачивается обратно в резервуар, где, протекая по змеевикам труб, нагревает техническую воду, находящуюся в резервуаре. Большинство установок, рассчитанных на полный год, требуют использования специальной солнечной жидкости или гликоля в цикле солнечных коллекторов.Все это контролируется микропроцессорной системой, контролирующей температуру котла и коллектора. Если температура фактора достаточно высока, включается насос и нагретая жидкость поступает в резервуар. Система с принудительным циклом требует непрерывной подачи — отсутствие подачи может вызвать перегрев фактора и опасный рост давления в установке. Чтобы избежать таких аварий, рекомендуется установить расширительные баки, компенсирующие расширение жидкости, и спускные клапаны, обеспечивающие утечку из системы, когда давление превышает определенное значение.Драйвер солнечной системы также может быть интегрирован с приводом печки центрального отопления. Вся система может быть спроектирована так, чтобы жидкость циркулировала под действием силы тяжести. К сожалению, это решение требует установки резервуара над солнечными батареями. Кроме того, в системе используются вентиляционные отверстия или воздухоотделители, защищающие от циркуляции воздуха в системе. Воздух очень опасен для насоса, так как может вызвать повреждение. Это также может вызвать нарушение потока воды или полную блокировку потока.

Коллектор:

Солнечный коллектор используется для преобразования солнечного излучения в тепловую энергию.Солнце нагревает впитывающую поверхность, которая передает тепло нагревательному фактору.

Существуют следующие типы солнечных коллекторов:

  • плоская пластина (нормальная и вакуумная)
  • труба (нормальная и вакуумная)
  • фокусировка
  • специальный (нестандартное исполнение)

Плоский коллектор:

Плоский коллектор когда-то был одним из самых популярных основных компонентов солнечных систем. Такое устройство похоже на окно.Он состоит из рамы и специального стакана, под которым находится плоская медная пластина с впаянными каналами для теплоносителя. Пластина, называемая поглотителем, покрыта специальным покрытием, поглощающим максимальное количество солнечных лучей. Чаще всего для этой цели используются: черный хром, оксиды титана и кремния или специальные агенты, такие как TINOX и BlueTec. Наибольшей эффективности можно достичь при нанесении покрытий из соединений титана, однако они являются наиболее дорогостоящим решением.Важным недостатком плоских коллекторов является то, что они полностью зависят от температуры наружного воздуха. Низкие температуры полностью препятствуют правильной работе, так как полученная энергия быстро возвращается в атмосферу. Лишь редко используемые вакуумные плоские коллекторы позволяют использовать свои преимущества зимой.

Конструкция плоского коллектора

Трубный коллектор:

Трубчатый коллектор — это естественная эволюция плоских пластинчатых коллекторов.Большинство недостатков их предшественников было устранено. Конструкция таких устройств отличается от конструкции плоских коллекторов. Тепло поглощается поглотителем, установленным внутри стеклянной трубы, заполненной вакуумом. Таким образом, поглотитель сохраняет максимальное количество тепла вне зависимости от температуры наружного воздуха.

Трубный коллектор

Существует два основных типа трубчатых коллекторов. Принцип работы первого заключается в том, что коэффициент нагрева протекает непосредственно по трубам поглотителей, а второй снабжен замкнутым контуром поглотителей.Оба они состоят из медной трубы. Под давлением в эту трубу необходимо ввести небольшое количество воды. Под воздействием тепла вода под давлением начинает испаряться и начинает двигаться в сторону конденсатора. Тепло передается от конденсатора к гликолю в емкости, расположенной в верхней части коллектора.

Трубка вакуумного коллектора

Любительские постройки:

В связи с тем, что солнечные установки довольно дороги, в Интернете полно самодельных конструкций солнечных панелей.Многие мастера строят собственные коллекторы, чтобы сэкономить еще больше денег (как на энергию, так и на само устройство). Детали для такой конструкции можно найти, например, на свалке или разобрать ненужные приспособления. Любительские постройки — это всегда плоские коллекторы. Такой коллектор состоит из рамы / корпуса, обычно из деревянных брусков или уголков. Поглотителем служат старые пластинчатые радиаторы или лист с прикрепленным медным змеевиком.

Коллектор Amatour с поглотителем из медных труб и стального листа

Изоляция:

Поглощающая система должна быть тщательно изолирована от окружающей среды.Изоляция дна и боковых сторон коллектора должна выполняться тщательно и с использованием наилучшего материала. Хорошим решением будет использование минеральной ваты или пенопласта. Не используйте пенополистирол, так как он может плавиться при более высоких температурах. Другой очень важный компонент — стекло, используемое для закрытия коллектора. Самое главное — это максимальное пропускание солнечного излучения при высоком уровне теплоизоляции. Слишком много тепла, теряемого через стекло, значительно снижает температуру коллектора.

Поглотитель:

Независимо от типа поглотителя, он должен быть покрыт покрытием, которое позволит удерживать как можно больше солнечного излучения. Вещество, используемое для этой цели, должно быть устойчивым к употреблению и быть гибким. Особое внимание следует обратить на тепловое расширение теплообменника, который подвержен резким перепадам температур. Создавайте матовые краски или специальные термостойкие продукты (например, краски для заслонок, каминов и т. Д.) чаще всего используются для этой цели. Компоненты меди часто чернеют химическими методами или электролизом в растворе NaOH. Также можно натереть медь водным раствором полисульфида калия и хлорида аммония. Конечно, есть и другой способ — вы можете наносить покрытия, разработанные специально для коллекционеров (например, Sunselect), но стоимость таких препаратов в рознице может сделать всю конструкцию слишком дорогой.

Установка:

Коллектор является основным элементом солнечной установки, но для правильной работы ему также требуются другие компоненты — дополнительное оборудование, такое как впускные и выпускные трубы для жидкости, насос и система управления.Вся установка должна выполняться очень осторожно и с учетом требований безопасности. Трубы и сосуды должны быть хорошо защищены от нежелательных потерь тепла. Самодельные солнечные установки сейчас очень популярны. Кроме того, конструкторы доработали устройства. Одним из примеров очень успешного изобретения, проверенного на практике, является использование резервуара для хранения, который позволяет слить всю воду из коллекторов. Остановка насоса приводит к полному высыханию солнечных коллекторов. Безусловно, это хорошая защита от замерзания воды в системе.Это также решает проблему избытка горячей жидкости, когда резервуар уже не может принимать больше энергии. Еще одна распространенная конструкция — счетчик воды, позволяющий лучше контролировать параметры работы.

Бак (бойлер):

Бак должен быть оборудован спиральным змеевиком. Более дешевые конструкции типа «U», к сожалению, не работают с солнечными батареями. Минимальная емкость котла на каждые 2 квадратных метра поверхности коллекторов — 100 литров. При совмещении солнечной установки с существующей установкой водогрейного котла используйте теплообменник, состоящий из двух теплообменников.Коллекторный контур следует подключить к самой нижней спирали. Оптимальным решением является использование больших тепловых буферов (более 1000 литров), позволяющих сохранять максимальное количество тепла в солнечные дни. Затем это тепло можно использовать в течение нескольких дней.

Драйвер:

Для управления солнечным комплектом можно использовать простой дифференциальный регулятор. Это устройство должно измерять температуру в коллекторе и сравнивать ее с температурой, измеренной в резервуаре.В случае благоприятных условий насос приводится в действие приводом, и между коллектором и теплообменником происходит обмен жидкости.

Являются ли солнечные энергетические системы выгодным вложением средств?

Иногда можно услышать, что солнечные коллекторы — не такая уж хорошая идея. В большинстве случаев жалобы касаются коэффициента кипения или протечек. Они возникают в результате неправильной установки оборудования или несоответствия производительности системы потребностям пользователей. Перегрев системы может быть вызван неправильным выбором мощности, вырабатываемой солнечным комплектом.Стоимость заводской солнечной установки не маленькая. Однако в некоторых странах есть возможность получения льготного кредита с фондированием (до 45%). Конечно, при строительстве дома стоимость намного ниже. Однако для создания солнечного коллектора вам потребуются базовые знания и хорошие навыки. Заводские вакуумные коллекторы могут эффективно работать круглый год даже при низких температурах. Плоские коллекторы, как заводские, так и самодельные, теряют слишком много энергии. Гораздо более рентабельное вложение в эффективную солнечную установку — это когда у вас большая семья или установка будет обеспечивать теплом рабочее место или гостиницу.Производители современных коллекторов гарантируют, что их комплекты могут сэкономить до 60% расходов на горячее водоснабжение в течение года.

Простая конструкция солнечного коллектора

Конструкция солнечного коллектора — Монтаж солнечного коллектора

Общее количество солнечной радиации, падающей на каждый квадратный метр в Великобритании, составляет около 1000 кВт / ч в год — из при этом должно быть возможно собрать от 25% до 33%. Для типичной системы водяного отопления подходящей считается общая площадь около 4 квадратных метров.

Количество воды, которое может быть непосредственно нагрето до «пригодной» температуры, довольно мало, поэтому обычно лучше использовать панель для предварительного нагрева холодной воды в отдельном резервуаре перед подачей в основной резервуар для горячей воды. Бак для хранения солнечной энергии должен составлять около 50 литров на 1 квадратный метр панели, однако это не очень важно. Бак и все соединительные трубопроводы должны быть хорошо изолированы, чтобы избежать потери собранного тепла. Лучшее положение для панели (Великобритания) — незатененное положение под углом к ​​западу от юга под углом примерно 35 градусов к горизонтали.Другая ориентация между ЮВ и ЮЗ и различные наклоны от 10 до 50 градусов вызывают лишь небольшое снижение общей собранной энергии.

Конструкция плоского солнечного коллектора

В показанной здесь простой однопанельной конструкции в качестве солнечного коллектора используется стандартный радиатор центрального отопления из штампованной стали. Они относительно дешевы и доступны как новые, так и бывшие в употреблении (при использовании подержанной панели радиатора удалите любую декоративную краску с лицевой поверхности и при необходимости повторно загрунтуйте).Тепловой КПД коллектора с радиатором центрального отопления должен быть сопоставим со многими коммерчески доступными конструкциями. Однако относительно большое содержание воды замедлит реакцию, особенно при низких уровнях солнечной радиации. Панель должна представлять собой единую панель без ребер и с резьбовыми соединительными отверстиями на всех четырех углах, чтобы легко обеспечить необходимый «диагональный» поток воды. Могут использоваться другие типы только с двумя соединениями, при условии, что соединения находятся в диагонально противоположных углах.Панель необходимо покрасить матовой черной масляной краской, чтобы получить поверхность с высокой впитывающей способностью. Все трубопроводы внутри корпуса должны быть изолированы, чтобы предотвратить утечку накопленного тепла обратно в корпус.

Размер коллектора, используемого в этой конструкции, не определяется, кроме как «h» и «w», это позволяет вам построить корпус, подходящий Ваш конкретный размер радиаторной панели. Старайтесь, чтобы размер панели не превышал 1 кв. М, панели большего размера тяжелые, и с ними будет сложно работать, особенно на крыше.Если вы сможете собрать корпус в его окончательном положении, работа будет проще.

Ящик для панели представляет собой простой деревянный ящик, сделанный из обработанной под давлением древесины (в качестве альтернативы можно использовать консервант для древесины хорошего качества). Показано одинарное остекление передней крышки с использованием оконного стекла толщиной 3 мм — для ящиков более 1 метра в любом направлении используйте отдельные части стекла, вам нужно будет добавить дополнительные опорные планки для остекления на передней части панели, чтобы зафиксировать их. Всегда измеряйте готовую коробку, прежде чем покупать стекло и покупать его обрезанным по размеру — оставьте 2-миллиметровый зазор вокруг стекла, чтобы оно могло расшириться.В Крышка переднего остекления должна выступать за нижний край корпуса примерно на 12 мм, чтобы дождь стекал, не натекая на корпус. Зажимы для остекления, прикрепленные к внутренней части нижнего края коробки, используются для удержания крышки на месте.

Изоляция, установленная за коллектором, должна быть высокотемпературного типа, поскольку температура может достигать 140 градусов Цельсия, если вода не циркулирует через панель. Другие, более дешевые альтернативные материалы (например, полистирол) не подходят, поскольку они могут давать усадку или даже плавиться.Следует избегать движения воздуха между задней частью панели и изоляцией, поэтому убедитесь, что все зазоры заполнены.

Практически невозможно сделать коллектор полностью водонепроницаемым в течение длительного периода, даже если дождь не попадет, может произойти некоторая внутренняя конденсация. Чтобы это не превратилось в проблему, проделайте три или четыре 5-миллиметровых «дышащих» отверстия в нижней части корпуса прямо перед изоляцией.

Срез солнечного коллектора

Список материалов для солнечного коллектора

Примечание: большинство размеров показаны h + x и w + y — где h и w — высота и ширина конкретной панели, которую вы используете.Измерьте их перед тем, как начать, и просто добавьте x или y по мере необходимости.

  • Древесина — древесина хвойных пород, строганная по всему периметру, желательно обработанная танилами или, в качестве альтернативы, обработанная консервантом для древесины хорошего качества. Указанные размеры пиломатериалов являются стандартными номинальными размерами — при планировании они будут меньше.
Обозначение детали размер (номинал) длина количество
А 125×25 Вт + 150 мм 1
B 125×25 h + 125 мм 2
С 100×25 Вт + 100 1
D 25×12 Вт + 100 1
E 25×12 ч + 75 2
ф 50×25 ч + 100 2 (или 3, где w больше 1 метра)
G 45×12 Вт + 150 1 (под углом (оба конца))
H 45×12 H + 150 2 (под углом (один конец))
Дж 50X50 крой 4 (или 6, где w больше 1 метра)
  • Фанера Наружное качество 9 мм, h + 150 x w + 150
  • Absorber Press steel, однопанельный радиатор без ребер — с концевой заделкой на всех четырех углах для обеспечения диагонального потока (или в 2 диагонально противоположных углах)
  • Стекло w + 95 xh + 135 мм, 3 мм, (измерьте коллектор, чтобы проверить размер перед покупкой — установите отдельные куски стекла, чтобы все размеры были меньше 1 м, это потребует дополнительных опорных стержней на передней части панель по мере необходимости)
  • Держатели для стекла — 2 на край максимум 1 м
  • Угловые пластины (250 мм x 100 мм, низкоуглеродистая сталь — изогнутые на 90 градусов) 4 шт.
  • Изоляция из высокотемпературного минерального волокна толщиной 50 мм
  • Соединительный трубопровод и соединители — медь, размер и количество в соответствии с
  • Металлическая фольга (например, кухонная пленка) по мере необходимости
  • Клей — столярный клей ПВА по необходимости
  • Замазка или глазурованная лента по необходимости
  • Винты и др.по мере необходимости

Корпус солнечного коллектора Basic

Монтаж солнечного коллектора

  1. Распилите древесину, обработайте все пропиленные концы качественным консервантом для древесины.
  2. Покрасьте панель коллектора, используя как можно более тонкий слой высокотемпературной черной масляной краски. (черная краска для выхлопных газов — хорошее предложение).
  3. Склейте и скрутите стороны (A, B и C).
  4. Приклейте подкладочный слой и прикрутите его к раме.
  5. Прикрутите угловые пластины на место.
  6. Приклейте и прикрутите (сзади) поперечные распорки (F) на место.
  7. Просверлите несколько дренажных отверстий диаметром 5 мм в нижней части, прямо перед изоляцией.
  8. Положите панель на место внутри корпуса, отметьте на каркасе точки входа в трубы. Снимите амортизатор и просверлите отверстия для ввода труб.
  9. Приклейте и прикрутите полоски D и E к внутренним сторонам корпуса так, чтобы они обеспечивали плоскую поверхность для стекло на той же линии, что и верх нижней стороны (С).
  10. Обрежьте изоляцию между поперечными распорками и корпусом и установите ее.
  11. Покройте изоляцию металлической фольгой.
  12. Если корпус не собирается, то сейчас самое время установить и закрепить корпус.
  13. Положите панель в корпус и закрепите с помощью прижимных блоков на поперечных распорках.
  14. Установите трубопровод между панелью и остальной частью системы, заполните зазоры вокруг труб, где они входят в корпус с помощью подходящего гибкого герметика.
  15. Вероятно, лучше не снимать переднюю крышку, пока система не будет заполнена водой и система проверена на герметичность.
  16. Установите зажимы для крепления стекла к нижней стороне корпуса.
  17. С помощью шпатлевки или клейкой ленты установите переднюю крышку и закрепите, прикрутив полоски G и H по бокам. дела.

Конструкция солнечного коллектора — Solar коллектор в сборе

Обзор солнечного водонагревателя

Разговор ниже между 2 человек в 2015 году сравнивает PV электрическую систему сбора гликоля vrs и не исчерпывающий опыт всех людей и может не отражать цены и результаты в вашем районе.
Лучшим источником является информация от местных пользователей.

Q. 28 000 долларов за фотоэлектрический солнечный водонагреватель? Это высоко.
Я полагаю, цена не была сделана самим? … и в цену включены батареи, инвертор, все, что обычно связано с преобразованием постоянного тока в переменный.
A. Это был установленный пакет для фотоэлектрической системы, который не Включите батареи. Правительство проверило полученные мной панели FP независимо от рейтинга SRCC и от их рейтинга добыча 21 450 кВт в день после неэффективности, что должно привести к Система горячего водоснабжения PV 6700 Вт.Согласно правительству большинство фотоэлектрических систем люди устанавливают 4 кВт-ч при средней цене 32 500 долларов за установку. У моего коллеги есть система на 16 кВт / ч, которую он использовал, и она стоила 86000 долларов. Мой другой коллега приобретает фотоэлектрическую систему стоимостью более 40 000 долларов в своем доме.
PV распространяется здесь как сумасшедший, потому что они не платят ни копейки это: по государственным льготам + установщик продает излишки и в конце концов домовладелец не платит ни за что. Мое состояние я думаю, обанкротится, если они будут продолжать в том же духе.

Комментарий: фотоэлектрические фотоэлектрические системы обеспечивают электричеством весь дом… не просто водонагреватель. PV снизилась в цене с 4-5 долларов за кВт до почти 1 доллар США за кВт 2015 г. с гарантией на выходную мощность 20-25 лет. Прочтите гарантия на любой солнечный продукт тщательно. продукт и установка есть разные гарантии. На разные детали предоставляются разные гарантии.

Гликолевая система:
В. Действуют ли еще стимулы для нагрева воды с помощью гликоля на солнечной энергии?
A. Я сделал трехпанельную гликольную систему с баком на 120 галлонов и после покупая его, мы получили обратно около 3500 долларов в виде льгот. Чтобы увидеть, есть ли солнечные льготы для вашего штата (федеральный должен составлять 15% от всей project) вы можете проверить http: // www.dsireusa.org/

В. После льгот, могу ли я узнать, какова была окончательная стоимость вашего гликоля? system 5 лет назад в 2010 году.
Я полагаю, установка не была сделана самодельной?
A. 3000 долларов после льгот. Итого 6500 долларов вперед 5 лет назад. Это Комплект для самостоятельного изготовления, в нем есть все необходимое, кроме трубы (можно забрать на месте). магазин), арматуры и утеплителя. Общая стоимость после поощрений была просто менее 3000 долларов за все, и я имею в виду все. Но из них 1000 долларов были на электрика и сантехника, потому что в моем штате вы должны иметь лицензию делать какие-то электрические или подключать к питьевой воде.

В. Примерно в каком районе мира вы живете?
В теплом климате благоприятствуют циркуляционные коллекторы гликоля?
В то время как холодный климат способствует сбору фотоэлектрической энергии из-за горячих панелей казусов меньше выхода?
В ветреном месте предпочтение отдается фотоэлектрическим элементам, поскольку они охлаждают панели, а ветрено расположение не лучшее место для коллектора гликоля, потому что он охлаждает панели.
A. Да, холодные фотоэлектрические панели производят больше электроэнергии. Я живу в холоде части Массачусетса (далеко от Бостона). Холод не влияет на мой солнечного гликоля много, просто ветер.Может быть -5F и солнечно, и моя солнечная гликоль будет иметь нижнюю часть моего резервуара выше 120F. Если 20F и очень ветрено Я могу ожидать около 90-100F. Даже в этом случае это самый низ моих 120 галлоновый бак. Моя солярка рассчитана на 2-3 дня с облаками / дождем в неделю обычно один день солнца, и моя солнечная турбина нагревает достаточно воды за 2-3 дня движения накатом. Моя не предназначена для дня за днем ​​солнца, хотя и включает защиту от перегрева.

В. Важным соображением цены является долговечность …
Гликолевые системы служат около 12-14 лет? И этот срок жизни включает панели для сбора и резервуар для хранения… все это.
А фотоэлектрические панели служат около 25 лет? Но это не так рассчитать замену накопителя, аккумуляторов и т. д. для перевода на Постоянный ток в переменный.
A. Есть 2 вида гликольных систем, я подозреваю, что вы думаете о эвакуированный вид трубки. Плоские панели строго изготовлены из стекла, меди, и алюминий, а технология ламинирования связывает покрытие с алюминий, поэтому он не может расслаиваться. Если бы вы видели сегодняшние плоские панели, вы бы трудно найти что-то, что может выйти из строя до 40 лет, просто жидкость, текущая в трубе на протяжении десятилетий, заставляет трубу становиться все тоньше и тоньше, и в конце концов он выйдет из строя.В моем доме есть оригинальные медные трубы и 1962 год а их еще собираются должно быть больше 50 лет.

В. Я бы сказал, что сравнение стоимости гликоля и PV составляет около 1: 1.6. Итак, если гликольная система прослужит 1 год … фотоэлектрическая система прослужит 1,6 года. При сравнении общей стоимости следует учитывать это?
A. Как уже упоминалось, я не вижу причин, по которым система гликолевого FP выйдет из строя в течение 40 лет. Причина, по которой я выбрал FP, заключалась в том, что у моих родственников солнечный дом 1983 года с фабричным изготовлением FP (не деревянный дом, винты, прозрачное стекловолокно и т. д.). Пока за 32 года у них было заменить насос, что было достаточно просто, иначе их солнечные FP по-прежнему идет сильное отопление дома и горячая вода.

Комментарий: паяные медные соединения, подверженные постоянной температуре изменение может длиться не так хорошо, как внутренние медные трубы. Нет 40 год гарантии. Стандартная гарантия — 12 лет. (сравните 25 лет для PV электрическая панель). Гарантия на продукт и гарантия на установку обычно отдельный. Гарантия на некоторые детали может отличаться от гарантии на другие детали.Баки солнечных водонагревателей, вероятно, не прослужат 40 лет. Там продукты, превосходящие ожидания при замене анодного стержня и родная вода не содержит тяжелых минералов. Панели долговечные 40 лет: прохладный регион, который получает солнце только 1 день из 3, например, Масса, панели, вероятно, прослужат дольше, чем в условиях интенсивного солнца, таких как Техас. Технологии всегда меняются. На сайте правительства указано 12-14 годичный срок службы гликолевого продукта.
Примечание: аноды могут быть нестандартными для вашего бака.Конечно они должны быть короче, чтобы они не соприкасались с солнечным контуром, и обычно используются два анодных стержня.

Q. Гликолевая система обычно должна располагаться рядом с водонагревателем, для пример на крыше.
A. Все солнечные установки здесь, водонагреватель в подвале и мы проводим гликолевые трубы к крыше через панели и обратно в подвал. Чердаки здесь вентилируются, чтобы не было ледяных плотин, поэтому чердаки обычно такая же температура, как и снаружи, которая может опускаться ниже 0F … ужасный место для бака с водой. Все ставят их в подвал и трубят по трубам. гликоль через панели на крыше.

Комментарий: Насосы должны соответствовать нагрузке. Больше локтей и дистанции увеличивают трение в линии. 85 Вт, 110 В переменного тока — стандарт. Они также продают насосы постоянного тока (3 Вт) для таких регионов, как Гавайи. подключен к фотоэлектрической панели 10 Вт, но нет переключателя или термостата контролировать это. Насос работает быстрее, когда солнце жаркое, но медленнее в пасмурные дни или совсем не ночью или очень пасмурно.

Q. Фотоэлектрические панели более многочисленны и могут быть расположены дальше … на земля … но большие расстояния вызывают большие потери мощности … и фотоэлектрические панели занимают много места, если расположены на земле.
A. Гидронику можно поставить где угодно, это просто труба (хотя должна быть медь). Фотоэлектрическая система занимает много места, я подсчитал, что нужна 24-панельная фотоэлектрическая система (система площадью 420 кв.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *