Площадь окраски квадратной трубы калькулятор: Площадь окраски прямоугольной трубы | Рас4ет.ру

Содержание

Площадь квадратной трубы калькулятор.

Сторона «A» в миллиметрах.

Сторона «B» в миллиметрах.

Длина трубы в метрах.

(разделитель дробной части от целой — точка)

Количество штук.

Расход краски грамм на м2.

Количество наносимых слоев краски.

Результаты:

(радиусом изгиба трубы пренебречь)

Площадь поверхности квадратной-профильной трубы в м2.

Количество краски для покраски трубы в гр.

Площадь профильной трубы.

Площадь Трубы 10×10


Площадь поперечного сечения = 100 мм2

Площадь поверхности одного метра =

0.04 м2

Площадь Трубы 10×15 (15×10)


Площадь поперечного сечения = 150 мм2

Площадь поверхности одного метра =

0.05 м2

Площадь Трубы 10×20 (20×10)


Площадь поперечного сечения = 200 мм2

Площадь поверхности одного метра =

0. 06 м2

Площадь Трубы 10×25 (25×10)


Площадь поперечного сечения = 250 мм2

Площадь поверхности одного метра =

0.07 м2

Площадь Трубы 15×15


Площадь поперечного сечения = 225 мм2

Площадь поверхности одного метра =

0.06 м2

Площадь Трубы 20×20


Площадь поперечного сечения = 400 мм2

Площадь поверхности одного метра =

0.08 м2

Площадь Трубы 20×30 (30×20)


Площадь поперечного сечения = 600 мм2

Площадь поверхности одного метра =

0.1 м2

Площадь Трубы 20×40 (40×20)


Площадь поперечного сечения = 800 мм2

Площадь поверхности одного метра =

0.12 м2

Площадь Трубы 25×25


Площадь поперечного сечения = 625 мм2

Площадь поверхности одного метра =

0. 1 м2

Площадь Трубы 25×40 (40×25)


Площадь поперечного сечения = 1000 мм2

Площадь поверхности одного метра =

0.13 м2

Труба профильная площадь окраски.

Площадь Трубы 28×25 (25×28)


Площадь поперечного сечения = 700 мм2

Площадь поверхности одного метра =

0.106 м2

Площадь Трубы 30×15 (15×30)


Площадь поперечного сечения = 450 мм2

Площадь поверхности одного метра =

0.09 м2

Площадь Трубы 30×20 (20×30)


Площадь поперечного сечения = 600 мм2

Площадь поверхности одного метра =

0.1 м2

Площадь Трубы 30×30


Площадь поперечного сечения = 900 мм2

Площадь поверхности одного метра =

0.12 м2

Площадь Трубы 40×40


Площадь поперечного сечения = 1600 мм2

Площадь поверхности одного метра =

0. 16 м2

Площадь Трубы 50×20 (20×50)


Площадь поперечного сечения = 1000 мм2

Площадь поверхности одного метра =

0.14 м2

Площадь Трубы 50×25 (25×50)


Площадь поперечного сечения = 1250 мм2

Площадь поверхности одного метра =

0.15 м2

Площадь Трубы 50×30 (30×50)


Площадь поперечного сечения = 1500 мм2

Площадь поверхности одного метра =

0.16 м2

Площадь Трубы 50×40 (40×50)


Площадь поперечного сечения = 2000 мм2

Площадь поверхности одного метра =

0.18 м2

Площадь Трубы 50×50


Площадь поперечного сечения = 2500 мм2

Площадь поверхности одного метра =

0.2 м2

Площадь покраски профильной трубы.

Площадь Трубы 60×30 (30×60)


Площадь поперечного сечения = 1800 мм2

Площадь поверхности одного метра =

0.18 м2

Площадь Трубы 60×40 (40×60)


Площадь поперечного сечения = 2400 мм2

Площадь поверхности одного метра =

0.2 м2

Площадь Трубы 60×60


Площадь поперечного сечения = 3600 мм2

Площадь поверхности одного метра =

0.24 м2

Площадь Трубы 70×70


Площадь поперечного сечения = 4900 мм2

Площадь поверхности одного метра =

0.28 м2

Площадь Трубы 80×40 (40×80)


Площадь поперечного сечения = 3200 мм2

Площадь поверхности одного метра =

0.24 м2

Площадь Трубы 80×60 (60×80)


Площадь поперечного сечения = 4800 мм2

Площадь поверхности одного метра =

0. 28 м2

Площадь Трубы 80×80


Площадь поперечного сечения = 6400 мм2

Площадь поверхности одного метра =

0.32 м2

Площадь Трубы 100×50 (50×100)


Площадь поперечного сечения = 5000 мм2

Площадь поверхности одного метра =

0.3 м2

Площадь Трубы 100×60 (60×100)


Площадь поперечного сечения = 6000 мм2

Площадь поверхности одного метра =

0.32 м2

Площадь Трубы 100×80 (80×100)


Площадь поперечного сечения = 8000 мм2

Площадь поверхности одного метра =

0.36 м2

Площадь профильной трубы под окраску.

Площадь Трубы 100×100


Площадь поперечного сечения = 10000 мм2

Площадь поверхности одного метра =

0. 4 м2

Площадь Трубы 120×60 (60×120)


Площадь поперечного сечения = 7200 мм2

Площадь поверхности одного метра =

0.36 м2

Площадь Трубы 120×80 (80×120)


Площадь поперечного сечения = 9600 мм2

Площадь поверхности одного метра =

0.4 м2

Площадь Трубы 120×120


Площадь поперечного сечения = 14400 мм2

Площадь поверхности одного метра =

0.48 м2

Площадь Трубы 140×60 (60×140)


Площадь поперечного сечения = 8400 мм2

Площадь поверхности одного метра =

0.4 м2

Площадь Трубы 140×100 (100×140)


Площадь поперечного сечения = 14000 мм2

Площадь поверхности одного метра =

0.48 м2

Площадь Трубы 140×140


Площадь поперечного сечения = 19600 мм2

Площадь поверхности одного метра =

0. 56 м2

Площадь Трубы 150×100 (100×150)


Площадь поперечного сечения = 15000 мм2

Площадь поверхности одного метра =

0.5 м2

Площадь Трубы 150×150


Площадь поперечного сечения = 22500 мм2

Площадь поверхности одного метра =

0.6 м2

Площадь Трубы 160×80 (80×160)


Площадь поперечного сечения = 12800 мм2

Площадь поверхности одного метра =

0.48 м2

Площадь поверхности профильной трубы.

Площадь Трубы 160×120 (120×160)


Площадь поперечного сечения = 19200 мм2

Площадь поверхности одного метра =

0.56 м2

Площадь Трубы 160×160


Площадь поперечного сечения = 25600 мм2

Площадь поверхности одного метра =

0. 64 м2

Площадь Трубы 180×100 (100×180)


Площадь поперечного сечения = 18000 мм2

Площадь поверхности одного метра =

0.56 м2

Площадь Трубы 180×180


Площадь поперечного сечения = 32400 мм2

Площадь поверхности одного метра =

0.72 м2

Площадь Трубы 200×120 (120×200)


Площадь поперечного сечения = 24000 мм2

Площадь поверхности одного метра =

0.64 м2

Площадь Трубы 200×160 (160×200)


Площадь поперечного сечения = 32000 мм2

Площадь поверхности одного метра =

0.72 м2

Площадь Трубы 200×200


Площадь поперечного сечения = 40000 мм2

Площадь поверхности одного метра =

0.8 м2

Площадь Трубы 250×250


Площадь поперечного сечения = 62500 мм2

Площадь поверхности одного метра =

1 м2

Площадь Трубы 250×300 (300×250)


Площадь поперечного сечения = 75000 мм2

Площадь поверхности одного метра =

1. 1 м2

Площадь Трубы 300×300


Площадь поперечного сечения = 90000 мм2

Площадь поверхности одного метра =

1.2 м2

формула через диаметр, наружная поверхность, сечение, как посчитать и вычислить

Содержание:

Для чего нужны геометрические вычисления
Формулы расчёта
Вычисление площади сечения
Вычисление площади наружной поверхности трубы
Вычисление площади внутренней поверхности трубы

Проектирование любого трубопровода – ответственное дело, от качественного проведения которого зависит скорость, дешевизна и даже сама возможность дальнейших работ. Краеугольный камень такого проектирования – расчёт геометрических параметров элементов системы: площади трубы (в сечении), площадей наружной поверхности трубы и внутренней. На этих параметрах строятся все дальнейшие расчёты, в том числе гидравлические, термодинамические и прочностные. Простейшим методам вычисления параметров труб посвящена эта статья.


Для чего нужны геометрические вычисления

Прежде чем начать замерять или узнавать исходные размеры, необходимо осознать, для каких целей послужат произведённые вычисления.

Таких целей несколько:

  1. Вычисление термодинамических параметров системы. Формула площади поверхности трубы необходима при расчёте теплоотдачи отдельной трубы, участка трубопровода или, к примеру, тёплого пола. Для того чтобы узнать эти параметры, необходимо высчитать общую площадь изделия или системы, с которой в окружающую среду происходит теплоотдача.
  2. Расчёт теплопотерь по направлению «источник тепла-отопительный прибор»
    . В этом случае наибольшая потеря тепловой энергии происходит на самом длинном участке с наибольшей площадью контакта с окружающей средой, то есть опять-таки в трубах. Поэтому, как и в предыдущем случае, узнав площадь поверхности теплоотдачи, можно, основываясь на этом значении и количестве выделяемого тепла в исходной точке, спланировать число и размер отопительных приборов в будущей системе. Читайте также: «Как рассчитать площадь поверхности трубы – примеры расчета внешней и внутренней площади».
  3. Оценка необходимого количества теплоизоляционных материалов. При работе труб в условиях холодного климата или резких перепадов наружной температуры без использования утеплителя не обойтись, а чтобы рассчитать точное его количество, необходимо найти площадь труб (в данном случае наружную), которые нужно покрыть термоизоляционным слоем. Следует отметить, что в промышленных масштабах правильный расчёт количества утеплителя поможет значительно сэкономить средства предприятия, сократив затраты и на непредвиденный ремонт (если утеплителя закупили меньше и трубы промёрзли), и на ненужный материал. Впрочем, небольшой запас утеплителя при закупке всё же необходим.
  4. Расчёт количества денежных средств, необходимых для приобретения нужного количества смазок, антикоррозийных покрытий, красящих веществ и т.п. К примеру, способ, как посчитать площадь трубы под покраску, достаточно прост: необходимое значение рассчитывается с помощью двух параметров – длины трубы и наружного диаметра (о формуле расчёта ниже). Второй шаг – получение данных о расходе покрытия на квадратный метр поверхности (или приведение исходного значения к метрическим единицам). После этого можно вычислить необходимое количество краски на всю длину трубы или трубопровода. Как и в предыдущем случае, точный расчёт поможет сократить расходы на закупку красящих веществ. В случае же, когда расход материала значительно больше запланированного, следует или уменьшить неэффективную толщину покрытия, или задуматься о намеренных или случайных потерях в процессе производства, упаковки или использования продукции.
  5. Вычисление максимальной пропускной способности трубы. Давайте разберемся, как рассчитать пропускную способность трубы правильно. В этом случае необходим расчёт площади сечения трубы. Опираясь на полученное максимальное значение производительности, рассчитывают (в процентном соотношении) и рабочее, которое в итоге и используется в технологической схеме. Следует отметить, что и расчёт проходимости трубы важен для проектирования трубопроводов.
    2,

    где l – толщина стенки трубы.

    Если в первой формуле принять R и D не внешними, а внутренними диаметрами, то учитывать толщину стенки не понадобится, и расчёт можно вести по первому уравнению.

    Нужно понимать, что перед тем, как вычислить площадь трубы в сечении, все исходные параметры следует привести к одинаковым единицам измерения (детальнее: «Как рассчитать площадь сечения трубы – простые и проверенные способы»). В принципе, по желанию расчёты можно вести в любых единицах – миллиметрах, сантиметрах, метрах и т.д. главное при проведении дальнейших вычислительных операций привести значение площади к стандартному виду (квадратным метрам).


    Следует ещё учитывать, что в напорных трубопроводах рабочая среда перемещается по всему объёму трубы, а в случае устройства самотёчной конструкции жидкость заполняет собой только часть объёма трубы – так называемое живое сечение (прочитайте также: «Как рассчитать объем трубы – советы из практики»).

    При гидравлических расчётах таких систем, соответственно, учитывается именно площадь живого сечения трубы, то есть площадь поперечного сечения перемещающегося в ней потока.

    Вычисление площади наружной поверхности трубы

    Как и в предыдущем случае, можно найти площадь трубы через диаметр. Формула расчёта также довольно проста, ведь развёртка площади цилиндра представляет собой прямоугольник, для которого длина одной стороны равна длине окружности наружного сечения, второй – длине отрезка трубы.

    Соответственно, формула площади трубы имеет вид:

    S=2πRL=πDL,

    где R – наружный радиус изделия, D – наружный диаметр, L – продольная длина трубы.

    Как и в предыдущем случае, расчёт необходимо вести в одинаковых единицах (например, если диаметр трубы равен 15 мм, а длина – 1,5 м, то при перерасчёте нужно использовать или значения 15 и 1500 мм, или 0,015 и 1,5 м).


    Основываясь на величине площади внешней поверхности трубы, рассчитывают необходимое количество красящих материалов или теплоизоляционных веществ.

    Вычисление площади внутренней поверхности трубы

    Площадь вычисляют по той же формуле, заменяя значения R и D соответственно на внутренние радиус и диаметр.

    Можно вычислить требуемое значение и с учётом наружных значений и толщины стенок изделия:

    S=2π(R-l)∙L=2π(D/2-l)∙L

    Вычисление внутренней площади изделия позволяет проводить гидродинамические расчёты, учитывающие внутреннюю шероховатость.

    С этим параметром связано несколько закономерностей:

    • при увеличении диаметра трубы влияние шероховатости на движение потока ослабляется;
    • если внутренняя поверхность трубы имеет склонность к образованию отложений (например, в случае стальных труб), со временем площадь внутренней поверхности и внутреннего сечения изменяются, а пропускная способность изделия падает.

    Как можно убедиться, формулы вычисления основных геометрических параметров труб достаточно просты и могут применяться в расчётах как профессионалами, так и новичками.

    Калькулятор труб — Вместимость круглых, прямоугольных и квадратных труб

    ПРЕДУПРЕЖДЕНИЕ

    Мы создали этот инструмент, чтобы помочь сравнить материалы для использования в различных проектах. Этот инструмент НЕ заменяет профессиональные инженерные или консультационные услуги. Многие люди звонят нам с вопросами о стальных или алюминиевых балках, проектировании зданий, несущих нагрузках на людей, максимальных пролетах для труб и т. д. Мы не отвечаем ни на один из этих вопросов и не даем никаких советов по проектированию любого рода по телефону. Мы являемся производителем инструментов, а не независимой консалтинговой фирмой по дизайну.

     

    Определения

     

    Коэффициент безопасности

    Это прочность материала, деленная на нагрузку. Более высокие значения более безопасны. Если материал может выдержать напряжение 50 000 фунтов на квадратный дюйм, а нагрузка создает на материал давление 25 000 фунтов на квадратный дюйм, коэффициент безопасности равен 2 (материал в 2 раза прочнее, чем напряжение от нагрузки).

     

    Предел текучести

    Уровень давления, который может выдержать материал, прежде чем он начнет изгибаться и не вернется к своей первоначальной форме после снятия силы.

     

    Предельное напряжение

    Уровень давления, при котором материал разрушается. Как правило, это приводит к тому, что конструкция выходит из строя как защитное устройство.

     

    Для чего следует использовать этот калькулятор Для

    Этот калькулятор следует использовать для сравнения материалов, диаметров и толщин стенок, чтобы узнать, как сделать ваши конструкции более безопасными. Например, предположим, что у вашего местного дистрибьютора металла есть трубка 1,75x.095 и сплошной стержень 1,25 в продаже из какой-то крупной оптовой покупки, которая не состоялась у другого клиента. Вы берете их обоих и смотрите на них, и они оба кажутся довольно мускулистыми. Но вы посмотрите на тонкую стенку на 1.75х.095 и решили, что легкий хлам не может быть таким прочным, как твердый стержень 1,25, верно? Неправильный. Введите их оба в наш калькулятор и проверьте другие источники, если вы все еще не уверены. Стенка . 095 на самом деле прочнее для изгибающих нагрузок! Вы также можете посмотреть на отдельные части каркаса безопасности под нагрузкой, но, пожалуйста, поймите, что оценка каркасов безопасности выполняется обученными профессионалами, и любая оценка, которую вы проводите на отдельных частях, не указывает на общую безопасность конструкции.

    Предположения и обсуждение

    Материал имеет номинальный размер (материал обычно меньше номинального размера, но находится в пределах спецификаций геометрии материала, например, стенка 0,120 на самом деле является 0,118). Нагрузка от транспортного средства представляет собой статическую распределенную нагрузку в середине самой длинной трубы и составляет 1/3 длины трубы. Нагрузка в середине самой длинной трубы является наихудшим случаем нагрузки на элемент клетки. Квадратная труба предполагает изгиб с одной стороной, параллельной нагрузке (подумайте о квадрате или ромбе). Коэффициенты безопасности используют числа в таблице ниже для прочности. Не забывайте, что размещение твердого металла рядом с пассажирами очень опасно, поэтому всегда следует учитывать использование надлежащих сидений, удерживающих устройств, набивки и шлемов.

    Образец каркаса безопасности

    Красная стрелка на картинке ниже обозначает груз, возможно, камень или пень. Мы выбрали самую длинную трубку, которая может попасть во время броска (синяя). В этом примере мы предполагаем, что мы будем триангулировать заднюю часть на части так, чтобы они были короче, чем элемент крыши, а также предполагаем, что передний стингер (не показан) предотвратит когда-либо перекладины переднего крыла (длинные части слева). прямое попадание. Этот калькулятор предполагает, что нагрузка находится в центре (наихудший случай напряжения) и распределена примерно на 1/3 длины трубы (выделено красным). Эта клетка — всего лишь простой пример для учебных целей, мы не рекомендуем вам строить подобную клетку. Этот калькулятор основан на многих предположениях и критериях «наихудшего случая», поэтому мы рекомендуем вам прочитать всю страницу, чтобы получить полное представление о том, что на самом деле означают эти цифры и почему мы должны учитывать их при проектировании каркаса безопасности. Этот пример показывает только то, как вы можете рассмотреть изолированную нагрузку на одну часть каркаса безопасности. Мы надеемся, что эта информация окажется для вас полезной и что вы не считаете ее одобрением своего дизайна.

    Сравнение с фактическим опрокидыванием

    При реальном опрокидывании вес вашего автомобиля не будет являться статической нагрузкой только на одну трубу. Ваш автомобиль будет двигаться, а множество трубок в каркасе безопасности будут выдерживать постоянно меняющиеся нагрузки во время крена. Нагрузка будет распределяться более чем по одной трубе, когда 2 или более труб соприкасаются с землей/камнями/и т. д. Вы также можете принять во внимание, что движущееся транспортное средство оказывает большую нагрузку на трубу, чем остановившееся транспортное средство. Еще одно соображение во время реального опрокидывания заключается в том, что когда труба изгибается, форма каркаса безопасности изменяется, и больше труб соприкасается с землей, поддерживая автомобиль.

    Если ничего не сгибается и транспортное средство оказывается на крыше, оно не может оставаться сбалансированным только на одной трубе, поэтому у него все равно будет более одной трубы, разделяющей нагрузку, когда он, наконец, перестанет двигаться. Земля также может двигаться, чтобы изменить распределение нагрузки, например, перемещение камней и изменение формы грязи/песка. Все эти рассуждения о более чем одной трубе, разделяющей нагрузку, призваны проиллюстрировать тот факт, что анализ напряжения каркаса безопасности представляет собой нечто большее, чем просто просмотр одной трубы за раз. Мы надеемся, что вы сможете использовать этот инструмент для изучения и оценки частей вашего дизайна. 93)
    Фактор стоимости 6063-T52 АЛ 21 000 (2) 27 000 (2) 0,096 (2) 2,58 (3) 6061-T6 АЛ 40 000 (1) 45 000 (1) 0,096 (2) подлежит уточнению () 7075-T6 АЛ 73 000 (1) 83 000 (1) 0,096 (2) подлежит уточнению () ASTM A53 Труба 30 000 (7) 48 000 (7) 0,284 (2) 2,31 (4) РЭВ 1015 48 000 (1)
    65 000 (1) 0,284 (2) 2,50 (5) ДОМ 1020 77 000 (1) 85 000 (1) 0,284 (2) 4,15 (5) 4130 Н 92 000 (5) 105 000 (5) 0,284 (2) 13. 10 (3) нержавеющая сталь 316 35 000 (1) 85 000 (1) 0,289 (2) 25,20 (4) Ти 3AL-2,5 В CWSR 105 000 (3) 125 000 (3) 0,162 (2) 48.00 (6)

    Вес материала на фут

    Используйте приведенную ниже таблицу с цветовой кодировкой, чтобы быстро узнать, сколько каждый материал и размер трубы будут весить на фут (все материалы представляют собой круглые трубы).

     Объяснение вариантов материалов

    6063-T52 AL: это алюминий (AL). 6063 — это обозначение сплава, а 6000 — серия алюминиевых сплавов, содержащих кремний и магний, для термообработки. T означает термически обработанный, что делается для улучшения его физических свойств. 52 — тип термической обработки, в данном случае снятие напряжения сжатия после термообработки на твердый раствор. Этот низкопрочный алюминий очень хорошо гнется.

    6061-T6 AL: это алюминий (AL). 6061 — это обозначение сплава, а 6000 — серия алюминиевых сплавов, содержащих кремний и магний, для термообработки. T означает термически обработанный, что делается для улучшения его физических свойств. 6 — тип термической обработки, в данном случае термообработка на раствор, а затем искусственное старение. Этот распространенный алюминий средней прочности можно сваривать, а также гнуть, хотя и не так легко, как 6063.

    7075-T6 AL: это алюминий (AL). 7075 — это обозначение сплава, а 7000 — это серия алюминиевых сплавов, содержащих цинк и небольшое количество магния (оба для прочности). T означает термически обработанный, что делается для улучшения его физических свойств. 6 — тип термической обработки, в данном случае термообработка на раствор, а затем искусственное старение. Это один из самых прочных алюминиевых сплавов, он плохо поддается сварке и его очень трудно согнуть.

    Труба ASTM A53: см. наше обсуждение на технической странице гибочного станка — «Труба против трубы». Эта сталь средней/низкой прочности производится в соответствии с требованиями, установленными Американским обществом по испытаниям и материалам (ASTM), документ A53. Материал стальной сплав, с широким выбором вариантов состава. Материал может включать несколько легирующих элементов (например, до 0,4 % хрома и 0,15 % молибдена, но не более 0,0 % того и другого). Он легко гнется и сваривается.

    HREW 1015: Горячекатаная электросварная труба, стальной сплав 1015. Эта труба формуется роликами из плоских полос в круглые трубы и сваривается в цельный кусок. Снаружи гладкая, а внутри может быть небольшое мерцание. Виден шов, обычно сине-серая полоса. Стали серии 1000 известны как простые углеродистые стали и имеют максимальное содержание марганца 1%. Последние две цифры — номинальное содержание углерода в сотых долях процента. 1015 содержит 0,15% углерода и 0,45% марганца. Он очень хорошо поддается сварке и легко формуется/изгибается.

    DOM 1020: Эта труба формуется с помощью роликов из плоских полос в круглые трубы и сваривается в сплошной кусок, а затем протягивается через оправку (DOM) для сжатия материала и доводки его до точного размера и геометрии. Внутри и снаружи гладкие, без видимых швов. Сплав такой же, как 1015 выше, но с 0,20% углерода по весу, что способствует более высокой общей прочности при немного более низкой пластичности.

    4130 N: Эта сталь относится к классу цементируемых стальных сплавов. Этот металл, обычно известный как «ChroMo» или «ChroMoly», для прочности легирован хромом и молибденом. Как и в приведенных выше сталях, последние две цифры обозначают содержание углерода, номинальное значение 0,3%. 4130 известен своим высоким пределом прочности и ударной вязкостью, а также приемлемым изгибом и сваркой. TIG является предпочтительным процессом сварки для этого сплава. После сварки его необходимо подвергнуть термической обработке, чтобы вернуть его к указанным здесь спецификациям. Он также может подвергаться термообработке и отпуску/закалке для увеличения предела текучести более 100 тысяч фунтов на квадратный дюйм (1).

    SS 316: Эта нержавеющая сталь с высокой коррозионной стойкостью была размещена на этой странице в целях сравнения. Соотношение цена/мощность не очень хорошее. Обычно изготавливается в виде круглой трубы.

    Ti 3AL-2.5V CWSR: Это титан с пониженным напряжением после холодной обработки (CWSR Ti). Он содержит 3,0% алюминия и 2,5% ванадия по весу. Этот титан представляет собой альфа-бета-сплав, принадлежащий к классу сплавов, которые плохо поддаются сварке, поскольку они уже обработаны для повышения твердости. Это имеет свойства, аналогичные классу 9.Титан (6AL-4V), поэтому вы также можете использовать этот калькулятор для приблизительного расчета этого материала. TIG почти обязателен для сварки этого материала. Его очень трудно обрабатывать, и документально подтверждено, что его использование в фигурных изгибах ограничено. Мы успешно согнули 3Al-2,5V и титан Grade 9 на трубогибочном станке M600. Оба рассматриваемых здесь сорта доступны в круглой трубе.

     

    Отказ от ответственности

    HREW может быть изготовлен из МНОГИХ различных сталей и обычно имеет предел текучести всего 40 000 фунтов на квадратный дюйм. Точные значения уточняйте у поставщика труб.

    Эта информация предназначена только для справки. Если вы не хотите, чтобы вас ранили или убили, оставайтесь дома и не управляйте никакими транспортными средствами. Ни один каркас безопасности не спасет вам жизнь во всех ситуациях. Этот калькулятор предназначен для помощи в процессе проектирования, который должен выполняться обученным профессионалом. Любая информация, предоставленная Rogue Fabrication, LLC, не является приемлемой заменой профессионального анализа, обещания или подтверждения характеристик любого материала или конструкции. Используя эту форму, вы освобождаете Rogue Fabrication, LLC от любой ответственности за ущерб, причиненный людям и имуществу в результате использования и/или неправильного использования любой предоставленной или полученной информации.

     

    Источники

    • (1): Machinery’s Handbook, Industrial Press. 28-е издание, 2008 г.
    • (2): Matweb, www.matweb.com. Дата обращения 08.11.2012.
    • (3): Online Metals, www.onlinemetals.com. Дата обращения 08.11.2012.
    • (4): Склад металлов
    • (5): Team Tube, LLC. Портланд, штат Орегон. Данные поставщика, дата 24.11.2012.
    • (6): Титаниум Джо, www.titaniumjoe.com. Дата обращения 08.11.2012.
    • (7): ASTM A53 1999 полный текст, ASTM.

    Фактор стоимости, основанный на 1,75×0,120 на фут, за исключением Ti (1,625×0,070), 316 SS (1,5×0,120) и 6063 (2,00×0,125). Калькулятор площади поперечного сечения ?

  6. Как найти площадь поперечного сечения?
  7. Пример: Использование калькулятора площади поперечного сечения.
  8. Применение форм поперечного сечения
  9. Часто задаваемые вопросы
  10. Калькулятор площади поперечного сечения определяет площадь для различных типов балок. Брус – очень важный элемент в строительстве. Несущие элементы мостов, крыш и полов в зданиях доступны в различных поперечных сечениях. Читайте дальше, чтобы понять, как рассчитать площадь поперечного сечения секции I , секции T , C балка, L балка, круглый стержень, труба и балки с прямоугольным и треугольным поперечным сечением.

    Что такое поперечное сечение и как рассчитать площадь поперечного сечения?

    Поперечное сечение определяется как общая область, полученная в результате пересечения плоскости с трехмерным объектом. Например, рассмотрим длинную круглую трубу, вырезанную (пересеченную) плоскостью. Вы увидите пару концентрических кругов. Концентрические окружности — это поперечное сечение трубы. Аналогично балки — L , I , C и T — названы по форме поперечного сечения.

    Разрез трубы

    Чтобы рассчитать площадь поперечного сечения, вам нужно рассматривать их как основные формы. Например, трубка представляет собой концентрический круг. Следовательно, для трубы с внутренним и внешним диаметром ( d и D ) и толщиной t площадь поперечного сечения можно записать как:

    AC=π×(D2−d2)/4A_ {C} = \pi \times (D^2-d^2)/4AC​=π×(D2−d2)/4 92)/4AC​=π×(D2−(D−2t)2)/4

    Аналогично, площадь поперечного сечения для всех других форм, имеющих ширину W , высоту H и толщину t₁ и t₂ приведены в таблице ниже.

    Различные перекрестные сечения

    Раздел

    Область

    Прямоугольник Полово

    (w × w) -(w- 2T₁ 2T₁).

    прямоугольник

    W × H

    I

    2 × W × T₁ + (H — 2 × T₁). × t₁ + (H — 2 × t₁) × t₂

    T

    W × t₁ + (H — t₁) × t₂

    L

    W × t + ( H — t) × t

    Равнобедренный треугольник

    0.5 × B × H

    Equilateral Triangle

    0.4330 × L²

    Circle

    0.25 × π × D²

    Tube

    0,25 × π × (D² — (D — 2 × t)²)

    Как найти площадь поперечного сечения?

    Выполните следующие действия, чтобы найти площадь поперечного сечения.

    • Шаг 1: Выберите форма сечения из списка, скажем, Полый прямоугольник . Теперь будет видна иллюстрация поперечного сечения и связанных с ним полей.
    • Шаг 2: Введите ширину полого прямоугольника, W .
    • Шаг 3: Заполните высоту поперечного сечения, H .
    • Шаг 4: Вставьте толщину полого прямоугольника, t .
    • Шаг 5: Калькулятор вернет площадь поперечного сечения .

    Пример: Использование калькулятора площади поперечного сечения.

    Найдите площадь поперечного сечения трубы, имеющей внешний диаметр 10 мм и толщину 1 мм .

    • Шаг 1: Выберите форму поперечного сечения из списка, т. е. Труба .

    • Шаг 2: Введите наружный диаметр трубы, D = 10 мм .

    • 92AC​=π×(102−(10−2×1)2)/4=28,274 мм2

    Применение форм поперечного сечения

    Знаете ли вы?

    • Балка I или H широко используется на железнодорожных путях.
    • Балки T используются в ранних мостах и ​​используются для усиления конструкций, чтобы выдерживать большие нагрузки на перекрытия мостов и опор. См. наш калькулятор нагрузки на балку , ​​чтобы узнать больше!

    FAQ

    Как рассчитать площадь поперечного сечения трубы?

    Для расчета поперечного сечения трубы:

    1. Вычесть квадратов внутреннего диаметра из наружного диаметра.
    2. Умножьте число на π.
    3. Разделить произведение на 4.

    Как рассчитать площадь двутавра?

    Площадь I сечения общей шириной W , высотой H и толщиной t можно рассчитать как:

    Площадь = 2 × W × t + (H - 2 × t) × t

    Как рассчитать площадь таврового сечения?

    Площадь таврового профиля общей шириной W , высотой H и толщиной t можно рассчитать как:

    Площадь = W × t + (H - 2 × t) × t

    Каково поперечное сечение куба?

    Поперечное сечение куба равно квадрату .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *