Паропроницаемость штукатурки — важный параметр при выборе – ООО «Север-М»
Выбор материала для оштукатуривания стен – дело ответственное. Он находится в прямой зависимости от того, из чего возведены стены и как решён или будет решаться вопрос утепления. Штукатурная система (последовательно нанесённые слои штукатурки и основание под них) участвует в парообмене помещение – улица. Паропроницаемость – один из основных показателей качества затвердевшего штукатурного раствора: таково указание ГОСТа для сухих строительных смесей.
Плотные окна и двери, слабая приточно-вытяжная вентиляция в большинстве домов создают условия для повышенной влажности. Молекулы воды проникают через стены в обоих направлениях, и первая преграда для влаги – штукатурка. Толщина этого слоя невелика, но не учитывать его при расчётах паропроницаемости и теплопроводности стен нельзя.
Основой для выбора штукатурки служит такое правило: паропроницаемость стенового материала (внутренней отделки, самой стены, утеплителя и декоративной отделки снаружи) должна быть минимальной внутри и увеличиваться с каждым слоем. Наружный слой всегда самый паропроницаемый.
Стеновой «пирог» будет нормально функционировать, если его наружный слой будет иметь паропроницаемость в 5 раз большую, чем штукатурная система. Понятно, что штукатурка для внутренних стен и стен наружных обладает противоположными паропроницающими характеристиками. Вот некоторые коэффициенты паропроницаемости в мг/(мчПа)
- Стекло – 0
- Пенополистирол экструдированный – 0,005-0,013.
- Штукатурка из цементно-песчаной смеси – 0,09.
- Штукатурка цементно-известково-песчаная – 0,098.
- Штукатурка известково-песчаная – 0,12.
- Кирпич полнотелый глиняный и силикатный в кладке – 0,11.
- Пенобетон и газобетон блочный, плотностью 1000 кг/м3 – 0,11.
- Каменная минеральная вата (75-85 кг/м3) – 0,5.
Из перечисленных минеральных штукатурок раствор на основе извести – самый подходящий для внутренних стен. Именно так поштукатурены стены 90% домов страны.
Особое внимание к этому коэффициенту стали проявлять в связи с массовым применением изделий из ячеистых бетонов: газоблоков. Этот материал в готовом сооружении требует ограничения доступа атмосферного воздуха. Иначе влажностная и карбонизационная усадка приведут к появлению трещин, вплоть до разрушения здания.
Легкодоступная защита блоков – оштукатуривание: но купить штукатурку в Санкт-Петербурге у фирмы ООО «Север Снаб Групп» (она называется «плитонит»), половина дела. Неграмотным нанесением штукатурного слоя можно вообще прекратить парообмен. Влага будет скапливаться в блоках, стены отсыреют…
Толщину такого слоя определяет конкретный теплотехнический расчёт. Если расчёт отсутствует, то корректной будет такая рекомендация. Внутренний слой штукатурки должен быть в два раза толще наружного. Кладка из газоблоков обязана быть идеально ровной, поэтому внутри толщина штукатурки обычно не превышает 10-20 мм. 5-10 мм снаружи обеспечат нормальный парообмен.
Грамотным решением будет использование для фасада силикатной или силиконовой штукатурки. Эти виды обладают повышенной паропропускаемостью. К недостаткам силикатных смесей надо отнести (как и ко всем силикатным материалам) слабую устойчивость к продолжительному воздействию сильных дождей.
Силиконовая штукатурка лишена всех недостатков, кроме высокой стоимости. Она отлично колеруется в массе, обладает великолепной адгезией, не впитывает влагу. Поверхность её очищается от пыли дождевыми струями.Следует также учитывать, что при нанесении нескольких слоёв декоративной или защитной штукатурки нижний слой должен иметь наибольшую паропроницаемость, верхний – наименьшую.
sever-m.ru
Паропроницаемость материалов таблица
Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.
Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.
Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.
Оборудование
Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.
Сегодня используется следующее оборудование:
- Весы с минимальной погрешностью – модель аналитического типа.
- Сосуды или чаши для проведения опытов.
- Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.
Разбираемся со свойством
Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.
Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.
На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.
Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:
Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.
Паропроницаемость в многослойной конструкции
Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.Рисунок подробно демонстрирует действие давления и проникновение пара в материал.
Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.
Разбираемся с коэффициентом
Таблица становится понятна, если разобраться с коэффициентом.
Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».
Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.
Особенности
С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.Сопротивления паропроницанию
Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.
Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.
jsnip.ru
Паропроницаемость стен и материалов
Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.
Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.
Какая паропроницаемость у строительных материалов
Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление — по пароизоляционным качествам
Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Разделение слоев пароизолятором
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация пароизоляционных качеств материалов
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.
Коэффициент сопротивляемости движению пара
Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.
Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
teplodom1.ru
Паропроницаемость материалов таблица, мг м ч па
Таблица паропроницаемости материалов
Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.
Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:
Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.
Источники пара внутри помещения
Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.
Что такое паропроницаемость
Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.
Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.
Конструкция стен с учетом паропроницаемости
Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.
Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.
Разрушительные действия пара
Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.
Использование проводящих качеств
Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.
С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.
Соблюдение основного принципа при возведении стен
Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.
Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.
При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.
Правила расположения пароизолирующих слоев
При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.
При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.
Знакомство с таблицей паропроницаемости материалов
При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.
Коэффициент паропроницаемости
мг/(м·ч·Па)
Таблица паропроницаемости материалов
Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.
Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:
Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.
Источники пара внутри помещения
Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.
Что такое паропроницаемость
Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.
Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.
Конструкция стен с учетом паропроницаемости
Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.
Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.
Разрушительные действия пара
Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.
Использование проводящих качеств
Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.
С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.
Соблюдение основного принципа при возведении стен
Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.
Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.
При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.
Правила расположения пароизолирующих слоев
При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.
При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.
Знакомство с таблицей паропроницаемости материалов
При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.
Коэффициент паропроницаемости
мг/(м·ч·Па)
Паропроницаемость стен и материалов
Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.
Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.
Какая паропроницаемость у строительных материалов
Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление — по пароизоляционным качествам
Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Разделение слоев пароизолятором
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация пароизоляционных качеств материалов
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.
Коэффициент сопротивляемости движению пара
Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.
Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
Паропроницаемость материалов
Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.
Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.
Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.
Оборудование
Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.
Сегодня используется следующее оборудование:
- Весы с минимальной погрешностью – модель аналитического типа.
- Сосуды или чаши для проведения опытов.
- Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.
Разбираемся со свойством
Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов. На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.
Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.
На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.
Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:
Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.
Паропроницаемость в многослойной конструкции
Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже. Рисунок подробно демонстрирует действие давления и проникновение пара в материал.
Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.
Разбираемся с коэффициентом
Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».
Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.
Особенности
С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар. Сопротивления паропроницанию
Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.
Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.
Паропроницаемость строительных материалов
Паропроницаемость строительных материалов по отечественным строительным нормам и международным стандартам.
Паропроницаемость строительного материала — это способность слоя материала пропускать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя строительного материала. Эта способность задерживать или пропускать водяной пар характеризуется величиной коэффициента паропроницаемости или сопротивления паропроницаемости: µ
Значение µ («мю») коэффициента паропроницаемости строительного материала является относительным значением сопротивления материала паропереносу по сравнению со свойствами сопротивления паропереносу воздуха. Например, значение µ = 1 для минеральной ваты означает, что она проводит водяной пар точно также хорошо, как и воздух. А значение µ = 10 для газобетона означает, что этот строительный материал проводит пар в 10 раз хуже воздуха. Значение µ умноженное на толщину в метрах дает эквивалентную по паропроницаемости толщину воздуха Sd (м).
В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2• ч • Па/мг) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».
Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.
Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.
Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. – м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.
Механизм паропроницаемости строительных материалов:
При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материалов в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).
iv-proect.ru
Таблица паропроницаемости различных строительных материалов
В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2ч Па/мг) нормируется в главе 6 “Сопротивление паропроницанию ограждающих конструкций” СНиП II-3-79 (1998) “Строительная теплотехника”.
Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) – 2007 год.
Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 “Теплотехнические свойства строительных материалов и изделий – Определение паропроницаемости”.
Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость “сухих” строительных материалов при влажности менее 70% и “влажных” строительных материалов при влажности более 70%. Помните, что при оставлении “пирогов” паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет “замокание” внутренних слоев строительных материалов и значительно увеличится их теплопроводность.
Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8:Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои.
По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ.
– м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.
Механизм паропроницаемости строительных материалов:
При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материаловв виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).
Пример пренебрежения паропроницаемостью строительных материалов в многослойных стенах: укрытие деревянных стен паронепроницаемым рубероидом привело к биологическому разрушению дерева в условиях постоянного увлажнения. При укрытии ячеистых бетонов паронепроницаемыми материалами(кирпичная кладка, ЭППС) происходит переувлажнение стен и их постепенное разрушение при периодическом промерзании.
Показатели паропроницаемости “сухих” строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости “влажных” строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.
ТАБЛИЦА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
Таблицаплотности, теплопроводности ипаропроницаемости различных строительныхматериалов.Основные эффективные теплоизоляционные,гидроизоляционные и пароизоляционныематериалы выделены.
Приведенысредние значения для материалов различныхпроизводителей. Более точные данные потеплоизоляционным материалам см. тут.
Материал Плотность, кг/м3 Теплопроводность, Вт/(м*С) Паропроницаемость,Мг/(м*ч*Па) Эквивалентная1(при сопротивлении теплопередаче = 4,2м2*С/Вт) толщина, м Эквивалентная2(при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м Железобетон 2500 1.69 0.03 7.10 0.048 Бетон 2400 1.51 0.03 6.34 0.048 Керамзитобетон 1800 0.66 0.09 2.77 0.144 Керамзитобетон 500 0.14 0.30 0.59 0.48 Кирпич красный глиняный 1800 0.56 0.11 2.35 0.176 Кирпич, силикатный 1800 0.70 0.11 2.94 0.176 Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14 1.72 0.224 Кирпич керамический пустотелый (брутто1000) 1200 0.35 0.17 1.47 0.272 Пенобетон 1000 0.29 0.11 1.22 0.176 Пенобетон 300 0.08 0.26 0.34 0.416 Гранит 2800 3.49 0.008 14.6 0.013 Мрамор 2800 2.91 0.008 12.2 0.013 Сосна, ель поперек волокон 500 0.09 0.06 0.38 0.096 Дуб поперек волокон 700 0.10 0.05 0.42 0.08 Сосна, ель вдоль волокон 500 0.18 0.32 0.75 0.512 Дуб вдоль волокон 700 0.23 0.30 0.96 0.48 Фанера клееная 600 0.12 0.02 0.50 0.032 ДСП, ОСП 1000 0.15 0.12 0.63 0.192 ПАКЛЯ 150 0.05 0.49 0.21 0.784 Гипсокартон 800 0.15 0.075 0.63 0.12 Картон облицовочный 1000 0.18 0.06 0.75 0.096 Минвата2000.0700.490.300.784Минвата1000.0560.560.230.896Минвата500.0480.600.200.96ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ330.0310.0130.130.021ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ450.0360.0130.130.021Пенополистирол1500.050.050.210.08Пенополистирол1000.0410.050.170.08Пенополистирол400.0380.050.160.08Пенопласт ПВХ 125 0.052 0.23 0.22 0.368 ПЕНОПОЛИУРЕТАН800.0410.050.170.08ПЕНОПОЛИУРЕТАН600.0350.00.150.08ПЕНОПОЛИУРЕТАН400.0290.050.120.08ПЕНОПОЛИУРЕТАН300.0200.050.090.08Керамзит 800 0.18 0.21 0.75 0.336 Керамзит 200 0.10 0.26 0.42 0.416 Песок 1600 0.35 0.17 1.47 0.272 Пеностекло 400 0.11 0.02 0.46 0.032 Пеностекло 200 0.07 0.03 0.30 0.048 АЦП 1800 0.35 0.03 1.47 0.048 Битум 1400 0.27 0.008 1.13 0.013 ПОЛИУРЕТАНОВАЯ МАСТИКА14000.250.000231.050.00036ПОЛИМОЧЕВИНА11000.210.000230.880.00054Рубероид, пергамин 600 0.17 0.001 0.71 0.0016 Полиэтилен 1500 0.30 0.00002 1.26 0.000032 Асфальтобетон 2100 1.05 0.008 4.41 0.0128 Линолеум 1600 0.33 0.002 1.38 0.0032 Сталь 7850 58 0 243 0 Алюминий 2600 221 0 928 0 Медь 8500 407 0 1709 0 Стекло 2500 0.76 0 3.19 0
1- сопротивление теплопередаче ограждающихконструкций жилых зданий в Московскомрегионе, строительство которых начинаетсяс 1 января 2000 года.2 – сопротивлениепаропроницанию внутреннего слоя стеныдвухслойной стены помещения с сухимили нормальным режимом, свыше которогоне требуется определять сопротивлениепаропроницанию ограждающей конструкции.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- Дата: 31-03-2015Просмотров: 189Комментариев: Рейтинг: 22
Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ.Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.
Диаграмма паропроницаемости наиболее распространенных строительных материалов.
Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1.
Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).
Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.
Рисунок 1. Таблица паропроницаемости стройматериаловПо этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании.
Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.Схема прибора для определения паропроницаемости.Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам.
Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:Американский тест с установленной вертикально чашей.Американский тест с перевернутой чашей.Японский тест с вертикальной чашей.Японский тест с перевернутой чашей и влагопоглотителем.Американский тест с вертикальной чашей.В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.Вернуться к оглавлениюНекоторые производители указывают на зависимость атмосферы легкости в доме от показателей паропроницаемости строительных материалов.
Однако если даже вы возьмете в расчет данные таблиц, в которых отражены уровни мю каждого материала, и выберете тот, который обладает наиболее высоким показателем, то через стены станет удаляться лишь 4% всего объема удаляемого из помещения пара, тогда как 96% станут устраняться посредством вытяжек и окон.А вот если помещение обклеено виниловыми или флизелиновыми обоями, то стены и вовсе не способны пропускать влагу.Если после строительства не был использован утеплительный материал, то в ветреную погоду или сильный мороз из комнат будет уходить тепло. Кроме того, долговечность стен, которые имеют высокую степень паропроницаемости и низкую плотность, гораздо ниже. Ведь при более высоком уровне паропроницаемости материал больше способен накапливать влагу, которая замерзает при морозах, уменьшая морозостойкость.Производители материалов по типу газобетона или пенобетона хитрят, когда указывают конечную теплопроводность, так как при расчетах используется материал в идеально сухом состоянии.
Если блок, выполненный из газобетона, наберет влагу, то его способности к теплоизоляции будут снижены в 5 раз, таким образом, стены в доме, которые выстроены из этого материала, будут отлично выпускать теплый воздух из помещений. Ситуация ухудшится, если температура снизится, это станет причиной смещения точки росы внутрь стены, конденсат, который образовался в стене, замерзнет.Жидкость, замерзая, увеличится в размерах и станет способствовать разрушению материала. Через некоторое количество циклов замерзания и оттаивания материал полностью придет в негодность.
Поэтому не во всех случаях стоит выбирать тот материал, который имеет высокую степень паропроницаемости.Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.
Какая паропроницаемость у строительных материалов
Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).Битум 0,008Тяжелый бетон 0,03 Автоклавный газобетон 0,12Керамзитобетон 0,075 — 0,09Шлакобетон 0,075 — 0,14Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе) Известковый раствор 0,12 Гипсокартон, гипс 0,075Цементно-песчаная штукатурка 0,09 Известняк (в зависимости от плотности) 0,06 — 0,11Металлы 0ДСП 0,12 0,24Линолеум 0,002 Пенопласт 0,05-0,23Полиурентан твердый, полиуретановая пена0,05 Минеральная вата 0,3-0,6 Пеностекло 0,02 -0,03Вермикулит 0,23 — 0,3Керамзит 0,21-0,26Дерево поперек волокон 0,06 Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление — по пароизоляционным качествам
Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Разделение слоев пароизолятором
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация пароизоляционных качеств материалов
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом.
Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т. е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.
Коэффициент сопротивляемости движению пара
Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).Воздух 1, 1 Битум 50 000, 50 000Пластики, резина, силикон — >5 000, >5 000Тяжелый бетон 130, 80Бетон средней плотности 100, 60Полистирол бетон 120, 60Автоклавный газобетон 10, 6Легкий бетон 15, 10 Искусственный камень 150, 120Керамзитобетон 6-8, 4Шлакобетон 30, 20Обожженная глина (кирпич) 16, 10Известковый раствор 20, 10Гипсокартон, гипс 10, 4Гипсовая штукатурка 10, 6Цементно-песчаная штукатурка 10, 6Глина, песок, гравий 50, 50Песчаник 40, 30Известняк (в зависимости от плотности) 30-250, 20-200Керамическая плитка ?, ?Металлы ?, ?OSB-2 (DIN 52612) 50, 30OSB-3 (DIN 52612) 107, 64OSB-4 (DIN 52612) 300, 135ДСП 50, 10-20Линолеум 1000, 800Подложка под ламинат пластик 10 000, 10 000Подложка под ламинат пробка 20, 10Пенопласт 60, 60ЭППС 150, 150Полиурентан твердый, полиуретановая пена 50, 50Минеральная вата 1, 1Пеностекло ?, ?Перлитовые панели 5, 5Перлит 2, 2Вермикулит 3, 2Эковата 2, 2Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.
Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату.
Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это «дышащий» утеплитель.
Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
- Стены дома должны быть и теплосберегающими и не дорогими в … Технология утепления стен «Мокрый фасад» получила наибольшую популярность. Это самое …
Источники:
- dom.dacha-dom.ru
- studfiles.net
- ostroymaterialah.ru
- teplodom1.ru
blog-potolok.ru
Паропроницаемость строительных материалов
В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2• ч • Па/мг) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».
Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.
Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.
Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. – м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.
Механизм паропроницаемости строительных материалов:
При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материалов в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).
|
Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.
dom.dacha-dom.ru
Паропроницаемость строительных материалов
В современном строительстве применяется множество видов строительных материалов. Одни из них прочны, другие долговечны, некоторые хорошо «держат» тепло или прекрасно выглядят. Важную роль при выборе стройматериала для стен дома имеет паропроницаемость – способность «дышать» и создавать комфортные условия для проживания. Разберемся, что это такое и какие материалы стоит выбрать для этого.
Что такое паропроницаемость
Паропроницаемостью материалов называют их способность пропускать или, наоборот, задерживать водяные пары, находящиеся в воздухе. Этот эффект объясняется за счет различия парциального (то есть создаваемого отдельными компонентами воздуха) давления водяного пара внутри и снаружи помещений.
Материалы с высокой паропроницаемостью будут эффективно пропускать влагу. При проектировании зданий используется количественная оценка этого показателя – коэффициент паропроницаемости µ («мю»), который измеряется в мг/(м·ч·Па) и показывает, какое количество паров (в мг) пропустит 1 метр данного материала за 1 час при данном давлении. Чем больше этот показатель, тем выше паропроницаемость материала.
При строительстве практическое значение имеет сравнительная оценка коэффициентов паропроницаемости для правильного выбора различных стеновых и отделочных материалов, и их сочетания в многослойных конструкциях стен современных домов. Ошибки в расчете паропроницаемости могут привести к негативным последствиям при эксплуатации построенного здания.
На что влияет паропроницаемость материалов
Важнейшим фактором комфортности дома для проживания является хороший микроклимат в помещениях. За его поддержание отвечает способность стен «дышать» — то есть сохранять влажностный режим воздуха, при необходимости поглощая или выделяя влагу в комнатах. А эта способность, в свою очередь, как раз и определяется паропроницаемостью материала, из которого сделаны стены.
При проживании в доме в зимний период важное значение для влажностного режима приобретает разница наружной и внутренней температуры. Водяные пары, выходя из помещения сквозь материалы стен, могут конденсироваться внутри стены, если паропроницаемость наружных слоев будет меньше, чем внутренних.
Задержка излишней влаги на внутренней поверхности или в толще стены может приводить к образованию плесени, которая не только портит внешний вид, но и наносит вред здоровью проживающих в доме людей. Кроме того, излишняя влажность повышает вероятность разрушения строительных конструкций.
При достаточно высоком содержании влаги в материале снижается его морозоустойчивость, так как при понижении температуры вода замерзает, образующийся лед распирает микропоры и растрескивает стены. Поэтому при строительстве домов из паропроницаемых материалов необходимо дополнительно принимать меры для защиты конструкций от промерзания.
Сравнение паропроницаемости строительных материалов
Ниже приводятся значения коэффициентов паропроницаемости µ для различных строительных материалов, а также их общая характеристика. Напомним, что чем выше «мю», тем большей паропроницаемостью обладает материал:
Материал |
К. паропроницаемости µ, мг/(м·ч·Па) |
дерево |
0,06 – 0,30 |
газобетон |
0,17 – 0,24 |
кирпич |
0,11 – 0,17 |
бетон, железобетон |
0,03 |
Паропроницаемость дерева варьируется в широких пределах, что делает его универсальным строительным материалом. В зависимости от плотности древесины и расположения волокон, для деревянной стены можно добиться как низкой, так и высокой паропроницаемости. Поэтому деревянные дома хорошо «дышат», при этом оставаясь теплыми, комфортными и экологически безопасными.
Газобетон по своей паропроницаемости вплотную приближается к древесине, при этом обладая значительно большей прочностью и технологичностью. Из всех вариантов искусственного камня с ним могут сравниться по этому показателю только другие разновидности ячеистого бетона. Однако паропроницаемость газобетона в меньшей степени зависит от его плотности, тогда как для пенобетона эта зависимость выражена.
Характеристики пенобетона в значительной степени определяются применяемой технологией изготовления. Наилучшей паропроницаемостью обладают пенобетонные блоки с более крупными порами, имеющие малую плотность и, как следствие, меньшую прочность. Высокопрочные марки обладают мелкими порами, и по паропроницаемости ближе к классическому кирпичу, чем к газобетону.
Кирпич до сих пор остается наиболее универсальным и практичным строительным материалом, обладающим множеством положительных качеств. Но, к сожалению, хорошая паропроницаемость кирпичным стенам не свойственна. Только некоторые пустотелые виды керамического кирпича и современная «теплая» керамика приближаются по этому показателю к нижней границе паропроницаемости газобетона.
Классический железобетонный монолит не обладает почти никакой паропроницаемостью, уступая газобетону и дереву по этому показателю в 5-10 раз. Поэтому многие панельные дома, построенные в 70-е и 80-е годы, отличаются таким ужасным микроклиматом. В современном домостроении монолит используют в сочетании с мощной системой вентиляции, а в индивидуальном строительстве – только как силовые элементы дома.
Выбирая, какому материалу стоит отдать предпочтение при возведении стен вашего будущего дома, нужно учитывать не только его прочность, долговечность или внешний вид. Для индивидуального жилищного строительства важнейшее значение имеет создание комфортного микроклимата, экологическая чистота и безопасность для проживания.
С этой точки зрения непревзойденными стройматериалами остаются классическое дерево и современный газобетон. Только эти материалы позволяют стенам дома «дышать», а вам оставаться здоровыми, полными сил и энергии. При этом оба этих варианта отличаются отличной теплоизоляционной способностью, удобны в применении и экономичны в строительстве.
sivco.ru