Описание принципов работы солнечных коллекторов, вакуумных и плоских коллекторов
Для превращения солнечной энергии в тепловую используют гелиосистемы.
Солнечный водонагреватель (солнечный коллектор) — это устройство, предназначенное для поглощения солнечной энергии, которая переносится видимым и ближним инфракрасным излучением для последующего её преобразования в тепловую энергию, пригодную для использования.
В гелиосистемах наиболее распространены два типа коллекторов: вакуумные и плоские.
Основной частью вакуумного коллектора является тепловая трубка. Такие коллекторы представляют собой ряд стеклянных трубок специальной конструкции. Трубка гелиоколлектора – это на самом деле две трубки (одна вложенная в другую), между которыми находится вакуум для наилучшей термоизоляции теплоносителя от внешней среды.
Способ передачи тепла от неё теплопроводу вакуумного солнечного коллектора: медная труба внутри пустая и содержит неорганическую и нетоксичную жидкость.
Трубы установлены в солнечном водонагревателе параллельно, угол их наклона зависит от географической широты места установки системы отопления. Ориентированные с севера на юг, на протяжении дня, трубки вакуумного солнечного коллектора пассивно двигаются за солнцем.
Они практически не нуждается в эксплуатационном обслуживании.Для поддержания вакуума солнечный водонагреватель использует газопоглотитель, который в производственных условиях подвергался влиянию высоких температур, в результате чего нижний конец вакуумной трубы покрыт слоем чистого бария. Он поглощает СО, СО2, N2, O2, H2O и H2, которые выделяются из трубы в процессе хранения и эксплуатации, и является чётким визуальным индикатором состояния вакуума в трубке солнечного коллектора. Когда вакуум исчезает, бариевый слой из серебристого становится белым. Это дает возможность легко определить, целая ли труба вакуумного солнечного водонагревателя.
Вакуумные солнечные коллекторы полностью пригодны для ремонта: в случае необходимости трубку можно заменить без остановки солнечного водонагревателя. За необходимостью вакуумные трубки можно добавлять (при недостатке тепла) или частично снимать (если есть его избыток), уменьшая площадь гелиоколлектора.
Плоские гелиоколлекторы имеют иную конструкцию. Главным элементом в них является абсорбер, поглощающий солнечное излучение, сверху он имеет прозрачное покрытие. Для повышения эффективности коллектора, используют специальное оптическое покрытие из закалённого стекла с пониженным содержанием металлов. Абсорбер соединён с теплопроводящей системой.
Конструкция плоских солнечных коллекторов является довольно простой. Внешне они представляют собой простую панель, имеющую прямоугольную форму. Эта установка обладает алюминиевым корпусом, несколькими патрубками, использующимися с целью отвода и подвода жидкого теплоносителя. Кроме того, изнутри стенки коллектора покрыты теплоизоляционным слоем. На сегодняшний день производители его толщину делают равной трем-четырем сантиметрам – это предоставляет возможность добиться существенного уменьшения уровня теплопотерь.
Принцип работы плоского солнечного коллектора основывается на парниковом эффекте — солнечные лучи поступают на поверхность этого устройства и проникают сквозь стекло. Теплопоглощающее покрытие, используемое в нижней части коллектора, характеризуется коэффициентом поглощения, составляющим 91%. В конечном итоге чрезмерный нагрев приводит к тому, что покрытие начинает излучать тепловую энергию. Мощность её расположена в инфракрасном диапазоне, другими словами, имеется возможность достичь аккумулирования энергии солнца в коллекторе. Процесс отвода тепла происходит при непосредственном участии теплоносителя.
Преимущества и недостатки плоских и вакуумных коллекторов
Вакуумные трубчатые
Плоские высокоселективные
Низкие теплопотери
Способность очищаться от снега и инея
Работоспособность в холодное время года до -30С
Высокая производительность летом
Способность генерировать высокие температуры
Отличное соотношение цена/производительность для южных широт и тёплого климата
Длительный период работы в течение суток
Возможность установки под любым углом
Удобство монтажаМеньшая начальная стоимость
Низкая парусность
Отличное соотношение цена/производительность для умеренных широт и холодного климата
минусы
минусы
Неспособность к самоочистке от снега
Высокие тепло потери
Относительно высокая начальная стоимость проекта
Низкая работоспособность в холодное время года
Рабочий угол наклона не менее 20°
Сложность монтажа, связанная с необходимостью доставки на крышу собранного коллектора
Высокая парусность
Если у Вас появились вопросы по выбору оборудования или необходимо подобрать солнечную или резервную станцию, вы можете обратиться за помощью к нашим специалистам.
Проконсультируйтесь у специалистов
устройство, виды и как сделать своими руками
Устройство солнечных гелиосистем
Гелиосистема – это полный комплект оборудования для преобразования из солнечного света тепловой энергии.
В неё входят следующие элементы:
- солнечные коллекторы;
- бак-аккумулятор;
- насос;
- контроллер управления.
Бак-аккумулятор содержит внутри себя теплообменник. Через него происходит передача тепла от теплоносителя воде, которая находится в бачке. Также во время монтажа бака-аккумулятора учитывается возможность дополнительно нагревания воды до нужной температуры, например с помощью газового котла.
Это необходимо на тот случай, если погода пасмурная и холодная и не хватает мощности коллектора.Насос используется для создания циркуляции теплоносителя от гелиоколлектора до бака и обратно. Контролер управления необходим для контроля над работой всех частей системы, в том числе для защиты от перегревания.
Обратите внимание! Дополнительно рекомендуется установить источник бесперебойного питания, на случай отключения от основной сети.
В конструкцию солнечного коллектора входит медная панель, которая покрыта высокоселективным материалом. Корпус чаще всего выполнен из алюминия. Стекло используется только ударопрочное и с малым содержанием металла.
Как работают
Панель солнечного коллектора преобразует инфракрасное излучение в тепловую энергию. Полученное тепло, передаётся теплоносителю, который по трубам протекает в бак-аккумулятор. Там он передаёт тепло воде, тем самым нагревая её. Остывший теплоноситель обратно возвращается в солнечный коллектор, и всё повторяется снова.
Обратите внимание! От того насколько эффективно работает гелиоколлектор, зависит производительность всей системы. Чем больше энергии он поглотит и чем меньше потеряет, тем выше будет КПД системы.
Виды солнечных коллекторов
Наиболее распространёнными считаются плоские и вакуумные гелиоколлекторы.
Вакуумные
Главным элементом вакуумного устройства является тепловая труба. Внешне представляет собой ряд, состоящий из стеклянных трубок, заключённых в алюминиевом каркасе. Каждая трубка состоит из двух трубок разных диаметров, а между ними находится вакуум. Благодаря нему теплоноситель внутри неё намного лучше защищён от воздействия температуры окружающей среды.
Устройство вакуумного гелиоколлектораМедная труба с меньшим диаметром содержит внутри себя специальную нетоксичную жидкость. При нагревании она испаряется. Пар поднимается к самому верху трубки – к наконечнику. Там он отдаёт тепло теплоносителю, находящемуся в теплопроводе.
Обратите внимание! Нетоксичная жидкость испаряется даже при температуре на улице -30°С, благодаря вакууму между трубками.
Конденсируясь на стенках трубы, жидкость обратно стекает вниз. Далее процесс снова повторяется. Все трубы расположены параллельно. Угол наклона зависит от места монтажа системы и географической широты объекта. Панель должна быть направлена на юг.
Устройство водонагревательной системы с использованием вакуумного гелиоколлектораСолнечный гелиоколлектор отлично работает даже в пасмурную погоду, так как вакуумные трубки хорошо поглощают инфракрасное излучение, проходящее сквозь тучи. В отличие от плоских устройств на вакуумные оказывает меньшее влияние низкая температура на улице и ветер, благодаря изоляционным свойствам вакуума. Системы с солнечными гелиоколлекторами этого типа могут функционировать до -35°C.
Чтобы внутри трубок как можно дольше сохранялся вакуум, один их конец покрыт толстым слоем бария. Он поглощает различные газы, которые появляются во время эксплуатации и хранения устройства. Также барий является своеобразным индикатором. Если он изменил цвет с серебристого на белый, значит, вакуума в трубке уже нет и её следует заменить на новую.
Чтобы провести замену, не нужно останавливать всю систему. Также, если одна из трубок вышла из строя, то коллекторы всё равно продолжат работать как прежде. В случае необходимости в систему можно добавить трубки или снять лишние.
Преимущества вакуумных гелиоколлекторов:
- удобный монтаж;
- простое обслуживание;
- низкие теплопотери;
- длительный период работы.
К недостаткам относят невозможность самостоятельной очистки от снежных наносов, а также минимальный угол наклона должен быть не менее 20°.
Плоские
Внешне плоские солнечные гелиоколлектора представляют собой прямоугольную панель. Корпус выполнен из алюминия. Для подачи и вывода теплоносителя имеются 2 патрубка. Боковые стороны и одна стена утеплены теплоизолятором толщиной 3-4 см. Это позволяет значительно сократить теплопотери устройства.
Главная часть всего гелиоколлектора – это абсорбер, соединенный с теплопроводом. Именно он поглощает инфракрасное излучение. Сверху он закрыт закалённым стеклом с низким уровнем металла. Чаще всего поглощающий элемент делается из меди, так как она имеет высокую теплопроводность.
Устройство плоского солнечного гелиоколлектораПринцип действия коллектора следующий: солнечные лучи проникают сквозь стекло и попадают на абсорбер. Он нагревается и передаёт тепло теплоносителю. В отличие от вакуумных систем, плоские коллектора могут самостоятельно очиститься от снега. Их монтаж можно провести под любым углом. Но по сравнению с вакуумными устройствами, у них больше теплопотери, и устанавливать их нужно только в полностью собранном виде. Еще один недостаток – в случае повреждения придётся менять всю панель. Но по сравнению с вакуумными, они более надёжные и простые.
Нюансы по использованию коллекторов для отопления или для нагрева воды
Количество устройств определяется в зависимости от потребностей. Солнечные гелиоколлектора можно объединять в группы. Объём и температура нагретой воды при этом зависят сразу от многих факторов, в том числе от температуры и погоды на улице, количества используемой воды и так далее. Поэтому температура нагрева воды будет разной каждый день.
Обратите внимание! В качестве теплоносителя внутрь солнечных коллекторов рекомендуется заливать нетоксичные антифризы. Это поможет использовать систему в холодных условиях, а также продлит срок её эксплуатации.
Перед тем как купить коллектор, следует точно определить цель использования и где он будет расположен. Чтобы правильно подобрать модель и количество.
Как сделать своими руками
Перед тем как приступить к сборке солнечного коллектора, следует сделать расчёты, чтобы устройство получилось качественным.
Схема сборкиПошаговая инструкция:
- Сначала собирается короб. Для этого используются доски толщиной 3 см и шириной 12 см. Дно делается из фанеры или текстолита. Для прочности устанавливаются ребра жёсткости. Чтобы древесина не гнила, её обрабатывают антисептиком.
- На дно укладывается слой теплоизоляции (минваты). После чего её закрывают оцинкованным металлом.
- Для создания теплообменника понадобятся 2 трубы с диаметром 1″ и длиной 70 см, 15 труб с диаметром 0,5″, длиной 160 см.
- В трубах большего диаметра с шагом до 4,5 см проделываются отверстия для труб меньшего размера.
- После чего всю конструкцию сваривают. При этом патрубки для входа и выхода теплоносителя должны находиться диагонально. Для входа внизу, для выхода сверху.
- Готовый радиатор монтируют внутрь ранее сделанного короба. Крепится ко дну короба с помощью хомутов или полосок металла. Для максимальной передачи тепла, нужно закрепить его как можно плотнее.
- Стыки тщательно заделываются герметиком. Дно короба и трубы окрашивается в чёрный цвет жаростойкой краской, тогда они будут поглощать больше тепла. Внешние детали окрашиваются белым, чтобы было меньше теплопотерь.
- После того как краска высохла, короб закрывается стеклом (4 мм), но так, чтобы расстояние между ним и радиатором было не менее 1,2 см. Можно использовать стеклопакет, это повысит эффективность устройства.
Цена и окупаемость
С финансовой точки зрения солнечные гелиоколлектора необходимо считать инвестициями. Срок окупаемости может быть разным – от нескольких месяцев до нескольких лет. Зависит он от того, когда и сколько раз будет использоваться система.Срок службы солнечных гелиоколлекторов может быть более 30 лет. Но они в любом случае окупятся, учитывая, что они практически не требуют обслуживания.
Работоспособность всей системы полностью зависит от качества каждого элемента и правильности монтажа. Солнечные гелиоколлектора не смогут работать в полную силу, если будет неправильно подобрано остальное оборудование. Установку и проектирование лучше доверить профессионалам.
виды, принцип работы системы, правила установки солнечных коллекторов, сфера и специфика применения устройств
Солнечными коллекторами называют установки, предназначенные для сбора тепловой энергии солнца, используемой для нагрева теплоносителя. Как правило, их используют для отопления и горячего водоснабжения помещений. Основные объекты использования гелиоколлекторов – здания коммерческого назначения и частные дома.
Солнечный коллектор – своего рода уникальное устройство. Его покупка в будущем позволит избавиться от ежемесячных расходов на горячую воду и отопление. Однако в связи с его немалой стоимостью главное – не допустить ошибок при выборе соответствующего оборудования.
Следовательно, перед тем, как приобрести гелиоколлектор, необходимо располагать общей информацией о его видах, особенностях и принципах работы.
Преимущества солнечных коллекторов и гелиосистем Oventrop
Экономичность. Солнечные коллекторы существенно снижают расходы на горячее водоснабжение и обогрев коттеджа в холодное время года. Использование гелиоустановок сокращает годовые затраты на нагрев воды до 60%, а на отопление здания – до 30%;
Экологическая чистота. Гелиоколлектор абсолютно безопасен, т.к. не допускает загрязнения окружающей среды и не оказывает негативного влияния на здоровье человека. Кроме того, в воде, находящейся под действием высоких температур и вакуума, появление и распространение бактерий становится невозможным;
Длительный срок эксплуатации. Надежность и долговечность солнечных коллекторов Oventrop обусловлена применением современных высококачественных материалов. Стеклянные и металлические элементы гелиоустановки отличаются ударопрочностью и устойчивостью к резкой смене погоды, в частности порывам ветра;Автономность. Гелиоустановка может отапливать здания даже в случае длительных перебоев в работе системы теплоснабжения. Аналогичная ситуация и при отключении горячей воды.
Специфика применения
В отличие от теплогенераторов и тепловых насосов, преобразующих энергию из согретых солнцем грунтовых вод и воздушных масс, солнечные коллекторы работают от прямых солнечных лучей, воздействующих на их поверхность. Единственный нюанс гелиоколлекторов заключается лишь в том, что ночью они находятся в пассивном режиме.
На суточную производительность гелиоустановки влияют такие факторы, как:
- Продолжительность светового дня, которая в свою очередь зависит от географической широты региона и времени года. Так, например, в Центральной части России летом солнечный коллектор будет функционировать по максимуму, а зимой – по минимуму. Это связано не только с длительностью дня, но и изменением угла падения солнечных лучей на гелиопанели;
- Климатические особенности региона. Как правило, на территории нашей страны имеется множество участков, над которыми больше 200 дней в году солнце скрывается за слоями туч или за пеленой тумана. Несмотря на то, что гелиоколлектор может улавливать даже рассеянные солнечные лучи, в пасмурную погоду его продуктивность значительно уменьшается.
Принцип работы и особенности устройства
Главным элементом гелиоколлектора является адсорбер. Он представляет собой медную пластину с присоединенной к ней трубой. При поглощении энергии воздействующих на гелиосистему прямых солнечных лучей, адсорбирующий элемент моментально нагревается, передавая тепло циркулирующему по трубопроводу теплоносителю.
От типа поверхности коллектора зависит его способность отражать или поглощать солнечные лучи. Так, например, устройство с зеркальной поверхностью превосходно отражает свет и тепло, в то время как черная пластина полностью поглощает их. Следовательно, для наибольшей эффективности медную пластину адсорбера чаще всего покрывают черной краской.
Чтобы также повысить количество излучаемой от солнца тепловой энергии, необходимо грамотно выбрать прикрывающее адсорбер стекло. Для солнечных коллекторов применяют специальное стекло с антибликовым покрытием и минимальным процентом содержащегося в нем железа. Такое стекло отличается от обыкновенного не только сниженной долей отражаемого света, но и увеличивает прозрачность.
Кроме того, для предотвращения загрязнения стекла, что тоже снижает эффективность работы гелиоустановки, корпус коллектора полностью герметизируют, либо наполняют инертным газом.
При всем этом часть получаемой тепловой энергии пластина адсорбера отдает в окружающую среду, нагревая взаимодействующий с гелиосистемой воздух. Для снижения теплопотерь адсорбирующий элемент следует изолировать. Поиски максимально эффективных способов теплоизоляции и привели к появлению множества разновидностей солнечных коллекторов. Одними из распространенных видов являются плоские и трубчатые, или вакуумные.
Плоские солнечные коллекторы: устройство
Гелиоколлектор плоского типа состоит из алюминиевого короба, сверху которого установлено защитное стекло с абсорбционным слоем. Внутри корпуса расположены медные трубки, впускной и выпускной патрубки. Дно и стенки короба защищены самым надежным теплоизолирующим элементом – минеральной ватой.
Некоторые модели плоских коллекторов могут также иметь под стеклом слой пропиленгликоля, который выполняет функцию поглотителя солнечных лучей. Это увеличивает его КПД, обеспечивая оборудованию максимальную производительность вне зависимости от сезона.
Достоинства и недостатки плоских гелиоколлекторов
К главным преимуществам плоских солнечных коллекторов относят:
- Способность к самоочищению в случае выпадения осадков в виде снега или инея;
- Высокие показатели в соотношении «цена/качество», что характерно для южных регионов с теплым климатом;
- Высокий КПД при эксплуатации в летний сезон;
- Сравнительно невысокая стоимость в отличие от других гелиоконструкций.
Основными недостатками таких систем являются:
- Высокие теплопотери, обусловленные конструктивными признаками установок;
- Небольшой КПД при функционировании осенью и зимой;
- Сложности в ходе перевозки и монтажа гелиосистем;
- Максимальные затраты в случае выполнения ремонтных работ;
- Повышенная парусность гелиоустановки.
Сфера применения плоских солнечных коллекторов
Несмотря на недостатки, данный тип гелиосистем используется для сезонного нагрева горячей воды. Плоские гелиоколлекторы используются:
- Для горячего водоснабжения летнего душа;
- Для подогрева воды в бассейне до нужной температуры;
- Для обогрева теплиц.
Вакуумные гелиоколлекторы
Вакуумный солнечный коллектор – это высокотехнологичное комплексное устройство, предназначенное для сбора тепловой солнечной энергии и последующей ее переработки в тепловую энергию, которая используется в быту и промышленных сферах для обеспечения отопления, подогрева воды в системах водоснабжения. Солнечный вакуумный коллектор высокоэффективен и эргономичен, обладает высоким КПД даже в условиях слабой освещенности и низких температур, что дает возможность использовать систему в любое время года. Устройство позволяет перерабатывать в тепло инфракрасное излучение, проникающее сквозь облака и рассеянные лучи. Солнечные коллекторы Oventrop способны даже при отрицательных температурах окружающей среды нагреть воду до ста градусов Цельсия.
Сфера применения вакуумных солнечных коллекторов
Использование конструкции значительно снижает затраты на отопление в зимний период года и гарантирует бесплатный подогрев воды в летний период года. Солнечный коллектор активно поглощает солнечную энергию и улавливает 98% энергии, когда степень вакуума — 10—. Системы устанавливают на фасадах, плоских или скатных крышах. При расположении в произвольных местах угол наклона должен находиться в пределах 15-750. Срок эксплуатации – не менее двадцати лет.
Системы широко используются для:
- подогрева воды в бытовых и производственных водопроводах, бассейнах;
- работы отопительных индивидуальных систем;
- обогрев теплиц.
Коллекторы легко включаются в сети водо- и теплоснабжения. Для подключения системы используется станция Regusol X Duo с вмонтированным теплообменником и контроллером, которая благодаря послойному накоплению теплоносителя повышает эффективность всей энергосистемы.
Установка солнечного коллектора
От правильности установки коллектора напрямую зависит эффективность конструкции. Для избегания риска поднятия давления вследствие перегрева воды расчет солнечного коллектора выполняются исключительно в специальных программах. Расчеты производятся с учетом погодных условий в точке размещения коллектора и среднегодового расхода тепла. Мощность солнечного корректора вычисляется исходя из данных о площади, значения инсоляции системы и КПД коллектора.
Перед началом расчетов определяется, будет система круглогодичной или сезонной.
- Солнечные корректоры сезонного типа предполагают использование в теплый период года (середина апреля – середина октября). Данная конструкция состоит из бака накопителя и коллектора. Теплоносителем служит вода, которая замерзает при отрицательных температурах, поэтому использование ее в холодную часть года невозможно.
- Круглогодичные системы могут эффективно использоваться вне зависимости от температурного режима окружающей среды. В конструкции используется незамерзающая эфирная жидкость, которая обеспечивает высокий КПД солнечного коллектора даже в самые холодные дни года.
Вакуумные солнечные коллекторы при грамотной установке и монтаже покрывают до 60% среднестатистической семьи в горячей воде и обеспечивают отопление в период от второй половины весны до середины осени. Например, при установке системы в средних широтах России коллектор площадью в два квадратных метра обеспечивает ежедневный нагрев ста литров воды до 40-600.
Эффективность установки в летний период года значительно выше. За один ясный световой день 1 м2 коллектора будет прогревать около восьмидесяти литров воды до температуры + 650. Среднегодовая производительность солнечного коллектора с поглощающей площадью в 3м2 будет состоять в диапазоне 500-700 кВт/ч на 1м2.
Устройство вакуумного солнечного коллектора
Компания Oventrop предлагает вакуумные солнечные коллекторы с тепловой трубкой. Системы с тепловой трубкой конструктивно напоминают термос: в стеклянную/металлическую трубку большего диаметра вставлена другая, меньшего диаметра. Пространство между ними вакуумированно, что обеспечивает максимально эффективную теплоизоляцию от воздействия внешних температур и минимальные потери на излучение. Вакуумная прослойка позволяет сохранить до 95% поглощенной тепловой энергии.
Все вакуумированные трубки оборудованы внутри медными пластинами поглотителя с эффективно собирающим солнечную энергию гелиотитановым покрытием. Заполненная специальной эфирной жидкостью тепловая труба установлена под поглотителем и присоединена к расположенному в теплообменнике конденсатору. Полученная поглотителем солнечная энергия превращает жидкость в пары, которые поднимаются в конденсатор и отдают тепло коллектору, конденсируется и возвращается в нижнюю часть колбы. Благодаря цикличности создается непрерывный процесс теплообмена.
Система способна вырабатывать значительные температуры и обеспечивает высокий КПД даже при слабой освещенности и t -30 — -450С (в зависимости от вида коллектора с трубками из стекла или металла). Вакуумные солнечные коллекторы просты и недороги в эксплуатации. Специальные соединения конструкции позволяют заменять либо поворачивать трубки в заполненной находящейся под давлением установке.
Как сэкономить деньги при помощи гелиоколлекторов
В пользе солнечных коллекторов сегодня уже никто не сомневается, но их рентабельность все же вызывает множество споров в основном из-за дороговизны оборудования. К тому же отечественные потребители не достаточно осведомлены о самих гелиоколлекторных системах, и чтобы решить, нужны ли они или нет, необходимо получить ответы на целый ряд вопросов.
Самый главный вопрос – экономический. Стоимость гелиоколлекторной системы, способной обеспечить горячей водой средний коттедж, находится в районе 5000 $. На первый взгляд недешево, – воображение рисует огромное количество воды, которую можно подогреть за эти деньги, используя газ или электроэнергию. Однако на самом деле этой суммы при сегодняшних ценах на газ семье из трех-четырех человек хватит максимум на пятилетку на то, чтобы отапливать жилище и пользоваться горячей водой.
Современные гелиоколлекторы позволяют полностью обеспечить нужды жильцов в горячей воде на протяжении 7-8 месяцев в году, а в остальное время подогревают воду до 30°С, существенно снижая расход газа. Подсчитано, что гелиоколлектор способен сэкономить до 80% средств, направленных на оплату ГВС. В межсезонье гелиоколлектор может полностью взять на себя отопление дома, а это еще 20-30% сэкономленного газа. В целом экономия составит 60%, что снижает затраты в пятилетку на газ с 5000$ до 2000$.
Если считать экономию при использовании электричества, вместо газа, то она окажется еще больше. Исходя из полученных данных, гелиоколлектор в среднем окупится за 5-7 лет. А если учитывать индексацию цен, вызванную постоянным ростом стоимости энергоносителей, то срок окупаемости может снизиться до 3-4 лет.
В среднем по году, в зависимости от климатических условий и широты местности, поток солнечного излучения на земную поверхность составляет от 100 до 250 Вт/м2, достигая пиковых значений в полдень при ясном небе, практически в любом (независимо от широты) месте, около 1 000 Вт/м2.
Практическая задача, стоящая перед разработчиками и создателями различного вида солнечных установок, состоит в том, чтобы наиболее эффективно «собрать» этот поток энергии и преобразовать его в нужный вид энергии (теплоту, электроэнергию) при наименьших затратах на установку. Простейшим и наиболее дешевым способом использования солнечной энергии является нагрев бытовой воды в так называемых плоских солнечных коллекторах. Более сложными являются устройства с вакуумными солнечными коллекторами. В солнечные летние дни разницы в работе хороших плоских и вакуумных солнечных коллекторов практически незаметна. Однако при низкой температуре окружающей среды преимущества вакуумных коллекторов становятся очевидны. Также, даже в летнее время есть разница в между максимальными температурами нагрева воды в коллекторах. Если для плоских коллекторов максимальная температура не превышает 80-90 градусов, то в вакуумных коллекторах температура теплоносителя может превышать 100 °С. С одной стороны, это требует постоянного отвода тепла от вакуумного коллектора, чтобы он не закипел. Однако с другой стороны, в системах с плоскими коллекторами существует проблема размножения бактерий и других микроорганизмов (там тепло и влажно), которой нет в системах с вакуумными коллекторами.
Полезная энергия, которую можно получить с помощью коллектора, зависит от многих факторов. Например, очень важна правильная оценка потребности в тепле, которую необходимо покрыть, и согласованные с ней компоненты гелиоустановки. Общее поступление солнечной энергии также имеет значение: ежегодная инсоляция в зависимости от конкретного региона Украины колеблется в диапазоне от 900 до 1300 кВтч/(м2год). В среднем в Украине на 1 м2 площади за год попадает приблизительно 1000 кВтч, что соответствует энергоемкости примерно 100 литров дизельного топлива или 100 м3 природного газа. Кроме этого, важны тип, угол наклона и ориентация коллектора. Для обеспечения экономичного режима эксплуатации гелиоустановки требуется также точное определение компонентов установки. Правильно сконструированные коллекторные гелиоустановки с согласованными между собой системными компонентами могут обеспечивать примерно от 50 до 60% ежегодной потребности частного дома в энергии для приготовления горячей воды. Использование гелиоустановки также и для поддержки системы отопления здания позволяет дополнительно сэкономить средства. В домах с низким расходом энергии можно экономить до 35% общей потребности в энергии для приготовления горячей воды и отопления.
В каких случаях использование гелиоколлекторов эффективно? Компания Solar-Tech
Солнечные коллекторы используют либо для круглогодичного горячего водоснабжения (ГВС) дома, либо для круглогодичного подогрева бассейна, либо как объединенные системы. Самое эффективное применение гелиосистем – в домах, где основное отопление – теплые полы. Даже в прохладную и пасмурную погоду солнечные коллекторы прогревают воду до 35-40 °C, что позволяет запускать основное отопление дома на 1,5-2 месяца позже (в начале декабря) и отключать на 1,5-2 месяца раньше (в начале марта). Но это не значит, что зимой гелиоколлекторы не будут эффективны. Они будут замещать до 40 % энергии на отопление.
Как правило, в системах отопления коллекторы подогревают буферную емкость снизу. Точнее говоря, они греют возвращающуюся по обратному контуру воду отопительной системы. Дальше, по мере надобности, теплоноситель подогревается основным источником отопления. А вот в домах, где отопление построено на высокотемпературных батареях, – гелиосистемы неэффективны.
Как расчитывается и когда окупится гелиосистема?
Для примера рассмотрим работу гелиосистемы, рассчитанную на объем воды 200 л с вакуумным коллектором на 30 трубок. Для нагрева 200 л воды до 55 °C нужно затратить примерно 10 кВт×ч энергии, будь то газ, дрова или электричество.
На графике показано замещение энергии гелиоколлектором на 30 трубок, который установлен в центральной части Украины. Летом есть излишки энергии, что означает прогрев воды до темпетарутры более 55 °C. Эти излишки можно использовать для подогрева бассейна. Летом традиционные источники тепла отключены, и для нагрева воды не потребляется газ, дрова или электроэнергия. Зимой, наоборот, недостаток тепла, и он компенсируется теплом из традиционных источников энергии. Но затрачивается меньше топлива, что положительно сказывается на экономии.
Если гелиосистему проектируют для поддержки отопления, то нужно расчеты вести под зимний период, учитывая, что летом придется куда-то девать излишки тепла. Это может быть бассейн, но можно и временно исключать из работы часть коллекторов, используя жалюзи либо чехлы.
Соимость гелиосистем просчитывается индивидуально. Результат зависет от количества людей, проживающих в доме (если расчет под ГВС), площади теплых полов, эффективности теплоизоляции дома (если расчет – для поддержки отопления). К примеру, в доме на 4 человека ставится один вакуумный трубчатый коллектор на 30 трубок. Этот коллектор способен нагреть 200 л воды в день до 60-70 °C в летний период и в солнечные зимние дни. Такая система стоит около 2000$, в ее состав входит: гелиоколлектор, система креплений для солнечного коллектора, напольный бойлер на 200 л с теплообменником (если его нет в доме), контроллер управления гелиосистемой, однолинейная насосная станция, теплоноситель, жидкость для контура гелиосистемы, двойной теплоизолированный трубопровод из нержавеющей стали с проводом под датчик температуры, расширительный бак под гелиосистему, комплект необходимых фитингов и арматуры. Средняя окупаемость гелиосистем по сравнению с затратами газа, электричества или твердого топлива варьируется от 8 до 10 лет, но это без учета инфляции и подорожаний тарифов и сырья. С учетом инфляции окупаемость не превышает 6-7 лет, а срок службы оборудования гелиосистем составляет более 25 лет.
При грамотном подборе и качественном монтаже, гелиосистема является замкнутой и практически не обслуживаемой, что в дальнейшем не влечет за собой дополнительных затрат.
Владимир Кучеров
инженер гелиосистем компании Solar-Tech
материал для журнала «Энергоэффективный дом»
Гелиоколлектор (Солнечный коллектор)
Гелиоколлектор – это техническое устройство, служащее для преобразования энергии солнца в тепловую энергию, которое может быть использовано как элемент системы отопления или горячего водоснабжения загородного дома или дачи.
Technical characteristics of the product:
Гелиоколлектор – это техническое устройство, служащее для преобразования энергии солнца в тепловую энергию, которое может быть использовано как элемент системы отопления или горячего водоснабжения загородного дома или дачи.
Place of delivery:
По всей республике
Product delivery order:
Delivery by producer
List of documentation transmitted with the product:
Инструкция
Product completeness:
комплект
Warranty and maintenance:
1 year
Requirements for the shelf life of the product:
20 year
Storage requirements:
Согласно инструкции
Presence of the comformity certificate for the product:
что это такое, как сделать своими руками?
Гелиоколлектор своими руками
Содержание статьи
Многие мечтают отапливать свой дом нескончаемой энергией солнца. Однако из-за дорогой стоимости гелиосистем, мечты так и остаются мечтами. А ведь при правильном подходе, можно сделать гелиоколлектор своими руками. Конечно же, он не сможет отапливать дом зимой, но вот работать для подогрева воды 5-7 месяцев в году, вполне способен.Самодельный гелиоколлектор состоит из нескольких частей: абсорбера, циркуляционного насоса, накопительной емкости для аккумулирования тепла. В конструкции буфера имеется отдельный змеевик, не соединённый с системой отопления и ГВС. Именно ему тепло и передаётся от солнечного коллектора, а потом и теплоносителю.
Что такое гелиоколлектор и из чего он состоит?
Гелиоколлектор — он же солнечный коллектор, специальное устройство, которое даёт возможность использовать солнечную энергию для отопления дома или нагревания воды. Заводские солнечные коллекторы, в отличие от самодельных, умеют работать даже в пасмурную погоду из-за особой конструкции.
На сегодняшнее время существует несколько разновидностей солнечных коллекторов: трубчатые, воздушные и плоские. Солнечный коллектор является основным элементом гелиосистемы, которая состоит из:
- Гелиоколлектора — солнечного коллектора;
- Накопительной емкости — буфера для сбора и хранения тепла;
- Циркуляционных насосов — чтобы принудительно осуществлять перекачку теплоносителя в системе;
- Контроллера управления — «мозгов» гелиосистемы, которые следят за температурой теплоносителя и другими параметрами её работы.
Выше были перечислены основные конструктивные элементы гелиосистем.
При изготовлении самодельного солнечного коллектора, от некоторых из них, можно смело отказаться.
Из чего сделать солнечный коллектор
Чтобы сделать самодельный солнечный коллектор, потребуется подготовить следующее:
- Старый водонагревательный бак на 100 л;
- Медную трубу, 10-15 метров длиной, диаметром не менее 12 мм;
- Кусок листовой стали, которая будет использоваться в качестве абсорбера для сбора солнечного тепла;
- Обрезную доску 25 мм и фанеру для изготовления корпуса солнечного коллектора;
- Кусок стекла, толщиной 4-5 мм.
Из инструментов для сборки солнечного гелиоколлектора, потребуются:
- Ножовка по дереву;
- Болгарка;
- Диск по металлу;
- Стеклорез;
- Саморезы по дереву;
- Кусок тонкой жести.
Также, чтобы утеплить солнечный коллектор, понадобится такой утеплитель, как минеральная вата. Ее можно заменить листами пенопласта или пенополистирола.
Обязательно понадобится и силиконовый герметик с монтажной пеной, которые придется использовать для заделки стыков в корпусе солнечного коллектора.
Как сделать гелиоколлектор своими руками
Итак, в первую очередь понадобится собрать корпус солнечного коллектора в виде прямоугольника с небольшими бортами, около 10 см высотой. Корпус должен иметь двойное дно, для укладки теплоизоляционного материала, который поможет предотвратить остывание гелиоколлектора.
Затем по размерам корпуса вырезается кусок листовой стали 1-2 мм. Наружная поверхность листа окрашивается в черный цвет. Кусок стали, как было сказано выше, будет выполнять роль абсорбера солнечного коллектора. Перед тем, как укладывать лист стали в каркас, на его поверхности следует закрепить змеевик из медной трубки.
Для крепления трубы к листу металла лучше всего использовать самодельные клипсы или проволоку. При этом очень важно, чтобы труба максимально плотно прилегала к поверхности листа, Таким образом, теплоотдача всегда будет хорошей. Медную трубу для изготовления солнечного коллектора своими руками, можно заменить профильной трубой из стали, тогда её нужно будет прихватить при помощи электросварки прямо к листу.
После изготовления абсорбера для солнечного коллектора, его можно укладывать в заранее утепленный каркас, после чего следует накрыть всю конструкцию толстым стеклом. О том, как резать стекло правильно, читайте в предыдущем выпуске строительного журнала samastroyka.ru. Сверху и снизу солнечного коллектора нужно не забыть и предусмотреть монтаж резьб, к которым будут подключены трубы гелиосистемы.
Соединять трубы с резьбами лучше всего низкотемпературным способом пайки медных труб с использованием мягкого припоя. После того, как солнечный коллектор собран, можно приступать к решению, не менее важного вопроса — переделывать водонагреватель под гелиоколлектор.
Переделка водонагревателя под солнечный коллектор
Передача солнечной энергии в гелиоколлекторе осуществляется через теплоноситель, который попадая в теплообменник буферной емкости, подогревает находящуюся в ней воду. Такой подход имеет массу достоинств, поскольку, только так возможно использовать в гелиоколлекторе не обычную воду, а специальную жидкость (антифриз), а трубы теплообменника меньше всего подвержены засорам.
Чтобы переделать водонагреватель на 100 литров под солнечный коллектор, потребуется снять фланец и вытянуть трубчатый нагреватель. Затем из медной трубы, по диаметру входного отверстия, следует намотать теплообменник из медной трубы. Определенная сложность в переделке водонагревателя, может возникнуть лишь с уплотнением отверстий, через которые будут выходить медные трубы теплообменника. Для их герметизации можно воспользоваться «холодной сваркой» или подобным ей средством.
Итак, солнечный коллектор почти готов. Осталось лишь подсоединить трубы идущие от него к водонагревателю (буферной емкости), после чего установить циркуляционный насос между ними и гелиоколлектором. Теперь, при наполнении водой гелиосистемы, насос беспрерывно будет перекачивать теплоноситель по кругу, отбирая тепло от абсорбера солнечного коллектора, и передавая его теплообменнику, который в свою очередь, начнёт нагревать воду в бойлере.
Оценить статью и поделиться ссылкой:Солнечный коллектор — Energy Education
Рисунок 1. Солнечный коллектор. [1]Солнечный коллектор — это устройство, которое собирает и / или концентрирует солнечное излучение от Солнца. Эти устройства в основном используются для активного солнечного нагрева и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно монтируются на крыше и должны быть очень прочными, поскольку они подвергаются воздействию различных погодных условий. [2]
Использование этих солнечных коллекторов представляет собой альтернативу традиционному нагреву воды для бытовых нужд с помощью водонагревателя, потенциально снижая затраты на электроэнергию с течением времени.Как и в домашних условиях, большое количество этих коллекторов можно объединить в массив и использовать для выработки электроэнергии на солнечных тепловых электростанциях.
Типы солнечных коллекторов
Существует много разных типов солнечных коллекторов, но все они сконструированы с учетом одной и той же основной предпосылки. В общем, есть материал, который используется для сбора и фокусировки энергии Солнца и использования ее для нагрева воды. В простейшем из этих устройств используется черный материал, окружающий трубы, по которым течет вода.Черный материал очень хорошо поглощает солнечное излучение и, поскольку материал нагревает воду, он окружает. Это очень простой дизайн, но коллекционеры могут стать очень сложными. Если нет необходимости в повышении температуры, можно использовать абсорбирующие пластины, но обычно устройства, в которых используются отражающие материалы для фокусировки солнечного света, приводят к большему повышению температуры.
Коллекторы плоские
Рисунок 2. Схема плоского солнечного коллектора. [3]Эти коллекторы представляют собой простые металлические коробки с каким-то прозрачным стеклом в качестве крышки поверх темной поглощающей пластины.Боковые стороны и дно коллектора обычно покрываются изоляцией, чтобы минимизировать тепловые потери в другие части коллектора. Солнечное излучение проходит через прозрачное остекление и попадает на пластину-поглотитель. [4] Эта пластина нагревается, передавая тепло либо воде, либо воздуху, который находится между остеклением и пластиной поглотителя. Иногда эти абсорбирующие пластины окрашиваются специальными покрытиями, которые лучше поглощают и удерживают тепло, чем традиционная черная краска. Эти пластины обычно делают из металла, который является хорошим проводником — обычно из меди или алюминия. [4]
Коллекторы вакуумные
Рисунок 3. Схема вакуумного трубчатого солнечного коллектора. [5]В этом типе солнечных коллекторов используется серия откачанных трубок для нагрева воды для использования. [2] В этих трубках используется вакуум, или откачанное пространство, для улавливания солнечной энергии и минимизации потерь тепла в окружающую среду. У них есть внутренняя металлическая трубка, которая действует как пластина поглотителя, которая соединена с тепловой трубкой, чтобы переносить тепло, собираемое от Солнца, к воде.Эта тепловая труба, по сути, представляет собой трубу, в которой жидкое содержимое находится под очень определенным давлением. [6] При таком давлении на «горячем» конце трубы находится кипящая жидкость, а на «холодном» конце — конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Как только тепло от Солнца переходит от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия переносится в воду, которая нагревается для использования. [2]
Коллекторы Line Focus
Рисунок 4.Схема солнечного коллектора с линейным фокусом. [7]В этих коллекторах, иногда называемых параболическими желобами, используются материалы с высокой отражающей способностью для сбора и концентрации тепловой энергии солнечного излучения. [8] Эти коллекторы состоят из отражающих секций параболической формы, соединенных в длинный желоб. [2] Труба, по которой течет вода, помещается в центре этого желоба, так что солнечный свет, собираемый отражающим материалом, фокусируется на трубе, нагревая ее содержимое.Это коллекторы очень высокой мощности, поэтому они обычно используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти желоба могут быть чрезвычайно эффективными для выработки тепла от Солнца, особенно те, которые могут поворачиваться, отслеживая Солнце в небе для обеспечения максимального сбора солнечного света. [2]
Коллекторы точечного фокуса
Рисунок 5. Точечный солнечный коллектор. [9]Эти коллекторы представляют собой большие параболические тарелки, состоящие из некоторого отражающего материала, которые фокусируют энергию Солнца в одной точке.Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны для сбора солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь какую-либо ценность. Эти тарелки могут работать по отдельности или быть объединены в группу, чтобы собрать еще больше энергии от Солнца. [10]
Коллекторы точечной фокусировки и аналогичные устройства также могут использоваться для концентрирования солнечной энергии для использования с концентрированной фотоэлектрической системой. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, специально разработанных для использования концентрированной солнечной энергии.
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Список литературы
- ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Г. Бойль. Возобновляемая энергия: энергия для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: Издательство Оксфордского университета, 2004.
- ↑ Wikimedia Commons. (10 августа 2015 г.). Плоский стеклянный коллектор [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
- ↑ 4.0 4.1 Flasolar. (10 августа 2015 г.). Плоские солнечные коллекторы [Онлайн]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.htm
- ↑ Wikimedia Commons. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
- ↑ RedSun. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
- ↑> Wikimedia Commons. (10 августа 2015 г.). Коллектор линейного фокуса [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
- ↑ Министерство энергетики США.(10 августа 2015 г.). Солнечный коллектор Line Focus [Онлайн]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
- ↑ Wikimedia Commons. (10 августа 2015 г.). Солнечный двигатель Стирлинга [Интернет]. Доступно: https://upload.wikimedia.org/wikipedia/commons/5/59/SolarStirlingEngine.jpg
- ↑ JC Solar Homes. (10 августа 2015 г.). Концентраторы и плоские коллекторы [Онлайн]. Доступно: http: //www.jc-solarhomes.ru / КОЛЛЕКТОРЫ / концентраторы_vs_flat_plates.htm
Солнечный коллектор — Energy Education
Рисунок 1. Солнечный коллектор. [1]Солнечный коллектор — это устройство, которое собирает и / или концентрирует солнечное излучение от Солнца. Эти устройства в основном используются для активного солнечного нагрева и позволяют нагревать воду для личного пользования. [2] Эти коллекторы обычно монтируются на крыше и должны быть очень прочными, поскольку они подвергаются воздействию различных погодных условий. [2]
Использование этих солнечных коллекторов представляет собой альтернативу традиционному нагреву воды для бытовых нужд с помощью водонагревателя, потенциально снижая затраты на электроэнергию с течением времени. Как и в домашних условиях, большое количество этих коллекторов можно объединить в массив и использовать для выработки электроэнергии на солнечных тепловых электростанциях.
Типы солнечных коллекторов
Существует много разных типов солнечных коллекторов, но все они сконструированы с учетом одной и той же основной предпосылки.В общем, есть материал, который используется для сбора и фокусировки энергии Солнца и использования ее для нагрева воды. В простейшем из этих устройств используется черный материал, окружающий трубы, по которым течет вода. Черный материал очень хорошо поглощает солнечное излучение и, поскольку материал нагревает воду, он окружает. Это очень простой дизайн, но коллекционеры могут стать очень сложными. Если нет необходимости в повышении температуры, можно использовать абсорбирующие пластины, но обычно устройства, в которых используются отражающие материалы для фокусировки солнечного света, приводят к большему повышению температуры.
Коллекторы плоские
Рисунок 2. Схема плоского солнечного коллектора. [3]Эти коллекторы представляют собой простые металлические коробки с каким-то прозрачным стеклом в качестве крышки поверх темной поглощающей пластины. Боковые стороны и дно коллектора обычно покрываются изоляцией, чтобы минимизировать тепловые потери в другие части коллектора. Солнечное излучение проходит через прозрачное остекление и попадает на пластину-поглотитель. [4] Эта пластина нагревается, передавая тепло либо воде, либо воздуху, который находится между остеклением и пластиной поглотителя.Иногда эти абсорбирующие пластины окрашиваются специальными покрытиями, которые лучше поглощают и удерживают тепло, чем традиционная черная краска. Эти пластины обычно делают из металла, который является хорошим проводником — обычно из меди или алюминия. [4]
Коллекторы вакуумные
Рисунок 3. Схема вакуумного трубчатого солнечного коллектора. [5]В этом типе солнечных коллекторов используется серия откачанных трубок для нагрева воды для использования. [2] В этих трубках используется вакуум, или откачанное пространство, для улавливания солнечной энергии и минимизации потерь тепла в окружающую среду.У них есть внутренняя металлическая трубка, которая действует как пластина поглотителя, которая соединена с тепловой трубкой, чтобы переносить тепло, собираемое от Солнца, к воде. Эта тепловая труба, по сути, представляет собой трубу, в которой жидкое содержимое находится под очень определенным давлением. [6] При таком давлении на «горячем» конце трубы находится кипящая жидкость, а на «холодном» конце — конденсирующийся пар. Это позволяет тепловой энергии более эффективно перемещаться от одного конца трубы к другому. Как только тепло от Солнца переходит от горячего конца тепловой трубы к конденсирующему концу, тепловая энергия переносится в воду, которая нагревается для использования. [2]
Коллекторы Line Focus
Рисунок 4. Схема солнечного коллектора с линейным фокусом. [7]В этих коллекторах, иногда называемых параболическими желобами, используются материалы с высокой отражающей способностью для сбора и концентрации тепловой энергии солнечного излучения. [8] Эти коллекторы состоят из отражающих секций параболической формы, соединенных в длинный желоб. [2] Труба, по которой течет вода, помещается в центре этого желоба, так что солнечный свет, собираемый отражающим материалом, фокусируется на трубе, нагревая ее содержимое.Это коллекторы очень высокой мощности, поэтому они обычно используются для выработки пара для солнечных тепловых электростанций и не используются в жилых помещениях. Эти желоба могут быть чрезвычайно эффективными для выработки тепла от Солнца, особенно те, которые могут поворачиваться, отслеживая Солнце в небе для обеспечения максимального сбора солнечного света. [2]
Коллекторы точечного фокуса
Рисунок 5. Точечный солнечный коллектор. [9]Эти коллекторы представляют собой большие параболические тарелки, состоящие из некоторого отражающего материала, которые фокусируют энергию Солнца в одной точке.Тепло от этих коллекторов обычно используется для привода двигателей Стирлинга. [2] Хотя они очень эффективны для сбора солнечного света, они должны активно отслеживать Солнце по небу, чтобы иметь какую-либо ценность. Эти тарелки могут работать по отдельности или быть объединены в группу, чтобы собрать еще больше энергии от Солнца. [10]
Коллекторы точечной фокусировки и аналогичные устройства также могут использоваться для концентрирования солнечной энергии для использования с концентрированной фотоэлектрической системой. В этом случае вместо производства тепла энергия Солнца преобразуется непосредственно в электричество с помощью высокоэффективных фотоэлектрических элементов, специально разработанных для использования концентрированной солнечной энергии.
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Список литературы
- ↑ Wikimedia Commons [Online], доступно: https://commons.wikimedia.org/wiki/File:Flatplate.png
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Г. Бойль. Возобновляемая энергия: энергия для устойчивого будущего , 2-е изд. Оксфорд, Великобритания: Издательство Оксфордского университета, 2004.
- ↑ Wikimedia Commons. (10 августа 2015 г.). Плоский стеклянный коллектор [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/4/40/Flat_plate_glazed_collector.gif
- ↑ 4.0 4.1 Flasolar. (10 августа 2015 г.). Плоские солнечные коллекторы [Онлайн]. Доступно: http://www.flasolar.com/active_dhw_flat_plate.htm
- ↑ Wikimedia Commons. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: https: // upload.wikimedia.org/wikipedia/commons/4/47/Evacuated_tube_collector.gif
- ↑ RedSun. (10 августа 2015 г.). Коллектор откачанных труб [Онлайн]. Доступно: http://www.redsunin.com/products/evacuated-tube-collector-solar-water-heaters/
- ↑> Wikimedia Commons. (10 августа 2015 г.). Коллектор линейного фокуса [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Solarpipe-scheme.svg/2000px-Solarpipe-scheme.svg.png
- ↑ Министерство энергетики США.(10 августа 2015 г.). Солнечный коллектор Line Focus [Онлайн]. Доступно: https://www.eeremultimedia.energy.gov/solar/photographs/line_focus_solar_collector
- ↑ Wikimedia Commons. (10 августа 2015 г.). Солнечный двигатель Стирлинга [Интернет]. Доступно: https://upload.wikimedia.org/wikipedia/commons/5/59/SolarStirlingEngine.jpg
- ↑ JC Solar Homes. (10 августа 2015 г.). Концентраторы и плоские коллекторы [Онлайн]. Доступно: http: //www.jc-solarhomes.ru / КОЛЛЕКТОРЫ / концентраторы_vs_flat_plates.htm
Солнечные тепловые коллекторы — Управление энергетической информации США (EIA)
Отопление солнечной энергией
Люди используют солнечную тепловую энергию для многих целей, включая нагрев воды, воздуха, внутренних помещений зданий и выработку электроэнергии. Существует два основных типа систем солнечного отопления: пассивных, систем и активных, систем.
Пассивное солнечное отопление помещения происходит, когда солнце светит через окна здания и согревает интерьер.Конструкции зданий, которые оптимизируют пассивное солнечное отопление (в северном полушарии), обычно имеют окна, выходящие на юг, которые позволяют солнцу светить на поглощающие солнечное тепло стены или полы в здании зимой. Солнечная энергия поглощается строительными материалами и нагревает внутреннее пространство зданий за счет естественного излучения и конвекции. Оконные выступы или шторы блокируют попадание солнечных лучей в окна летом, чтобы в здании было прохладно.
Активные солнечные системы отопления имеют коллекторы для нагрева текучей среды (воздуха или жидкости) и вентиляторы или насосы для перемещения текучей среды через коллекторы, где она нагревается, во внутреннюю часть здания или в систему аккумулирования тепла, где тепло выпускается и возвращается в коллектор для повторного нагрева.Активные солнечные водонагревательные системы обычно имеют резервуар для хранения воды, нагретой солнечными батареями.
Солнечные коллекторы либо неконцентрирующие, либо концентрирующие
Неконцентрирующие коллекторы — Площадь коллектора (область, которая задерживает солнечное излучение) совпадает с площадью поглотителя (площадью, поглощающей солнечную энергию / излучение). Системы солнечной энергии для нагрева воды или воздуха обычно имеют неконцентрирующие коллекторы. Плоские коллекторы являются наиболее распространенным типом неконцентрирующих коллекторов для воды и отопления помещений в зданиях и используются, когда достаточно температуры ниже 200 ° F.
- Плоская металлическая пластина, улавливающая и поглощающая солнечную энергию
- Прозрачная крышка, которая пропускает солнечную энергию через крышку и снижает потери тепла от поглотителя
- Слой изоляции на задней части поглотителя для уменьшения потерь тепла
Солнечные водонагревательные коллекторы имеют металлические трубки, прикрепленные к поглотителю.Жидкий теплоноситель прокачивается через трубы абсорбера для отвода тепла от абсорбера и передачи тепла воде в резервуаре для хранения. Солнечные системы для нагрева воды в бассейне в теплом климате обычно не имеют крышек или изоляции для абсорбера, и вода из бассейна циркулирует через коллекторы и возвращается обратно в бассейн.
Солнечные системы воздушного отопления используют вентиляторы для перемещения воздуха через плоские коллекторы внутрь зданий.
Концентрирующие коллекторы —Площадь, задерживающая солнечное излучение, больше, иногда в сотни раз больше, чем площадь поглотителя.Коллектор фокусирует или концентрирует солнечную энергию на поглотителе. Коллектор обычно перемещается в течение дня, чтобы поддерживать высокую степень концентрации на поглотителе. Солнечные тепловые электростанции используют концентрирующие системы солнечных коллекторов, поскольку они могут производить высокотемпературное тепло, необходимое для выработки электроэнергии.
Последнее обновление: 9 декабря 2020 г.
Солнечные технологии отопления и охлаждения | Возобновляемое отопление и охлаждение: преимущество тепловой энергии
Солнечные тепловые технологии поглощают солнечное тепло и передают его на полезные цели, такие как отопление зданий или водоснабжение.Используется несколько основных типов гелиотермических технологий:
В дополнение к вышеупомянутым солнечным тепловым технологиям, такие технологии, как солнечные фотоэлектрические модули , могут производить электричество, а здания могут быть спроектированы так, чтобы улавливать пассивное солнечное тепло .
Солнечная энергия считается возобновляемым ресурсом, поскольку она непрерывно поступает на Землю от Солнца. Посетите веб-сайт EPA Clean Energy, чтобы узнать больше о нетепловых солнечных технологиях, а также о преимуществах и влиянии солнечной энергии на окружающую среду.
Солнечные коллекторы неглазурованные
Неостекленный солнечный коллектор на крыше бассейна и фитнес-центра.
Кредит: Альберт Нуньес, NREL 10651
Неглазурованный солнечный коллектор — одна из самых простых форм солнечной тепловой технологии. Теплопроводящий материал, обычно темный металл или пластик, поглощает солнечный свет и передает энергию жидкости, проходящей через теплопроводную поверхность или за ней. Этот процесс аналогичен тому, как садовый шланг, лежащий на открытом воздухе, поглощает солнечную энергию и нагревает воду внутри шланга.
Эти коллекторы описываются как «неглазурованные», потому что они не имеют стеклянного покрытия или «остекления» на коллекторной коробке для улавливания тепла. Отсутствие остекления создает компромисс. Неглазурованные солнечные коллекторы просты и недороги, но, не имея возможности удерживать тепло, они теряют тепло обратно в окружающую среду и работают при относительно низких температурах. Таким образом, неглазурованные коллекторы обычно лучше всего работают с небольшими и умеренными системами отопления или в качестве дополнения к традиционным системам отопления, где они могут снизить топливную нагрузку за счет предварительного нагрева воды или воздуха.
Солнечные коллекторы для обогрева бассейнов — это наиболее часто используемая неглазурованная солнечная технология в Соединенных Штатах. В этих устройствах часто используются черные пластиковые трубчатые панели, установленные на крыше или другой опорной конструкции. Водяной насос обеспечивает циркуляцию воды в бассейне непосредственно через трубчатые панели, а затем возвращает воду в бассейн с более высокой температурой. Хотя эти коллекторы используются в основном для обогрева бассейнов, они также могут предварительно нагревать большие объемы воды для других коммерческих и промышленных применений.
Как это работает
- Солнечный свет: Солнечный свет попадает на темный материал в коллекторе, который нагревается.
- Циркуляция: Холодная жидкость (вода) или воздух циркулирует через коллектор, поглощая тепло.
- Использование: Более теплая жидкость используется для таких применений, как обогрев бассейна.
Узнайте больше о неглазурованных солнечных коллекторах
Начало страницы
Солнечные коллекторы Transpired
На южной стене этого склада установлен солнечный коллектор.
Источник: Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США
Солнечные коллекторы с просвечиваемым воздухом обычно состоят из перфорированного металлического облицовочного материала темного цвета, установленного на существующей стене на южной стороне здания. Вентилятор втягивает наружный воздух через перфорацию в пространство за металлической обшивкой, где воздух нагревается до температуры на 30–100 ° F выше температуры окружающего воздуха. Затем вентилятор втягивает воздух в здание, где он распределяется через систему вентиляции здания.
Солнечный коллектор — это проверенная, но все еще развивающаяся технология солнечного отопления. Этот вид техники лучше всего подходит для обогрева воздуха и вентиляции помещений. Его также можно применять в различных производственных и сельскохозяйственных целях, например, для сушки сельскохозяйственных культур.
Как это работает
- Солнечный свет: Солнечный свет попадает на темную перфорированную металлическую облицовку, которая нагревается.
- Циркуляция: Циркуляционный вентилятор втягивает воздух через отверстия за металлической обшивкой, нагревая воздух, который затем втягивается в здание для распределения.
Узнайте больше о солнечных коллекторах воздуха Transpired
Начало страницы
Плоские солнечные коллекторы
Множество плоских солнечных коллекторов на крыше школы.
Кредит: Джо Райан, NREL 19690
Большинство плоских коллекторов состоят из медных трубок и других теплопоглощающих материалов внутри изолированного каркаса или корпуса, покрытого прозрачным стеклом (стеклом). Теплопоглощающие материалы могут иметь специальное покрытие, которое поглощает тепло более эффективно, чем поверхность без покрытия.
Плоские остекленные коллекторы могут эффективно работать в более широком диапазоне температур, чем неглазурованные коллекторы. Плоские коллекторы часто используются в дополнение к традиционным водогрейным котлам, предварительно нагревая воду, чтобы снизить потребность в топливе. Они также могут быть эффективны для обогрева помещений. Используя систему теплообмена, они могут надежно производить горячий воздух для больших зданий в светлое время суток.
Как это работает
- Солнечный свет: Солнечный свет проходит через стекло и попадает на темный материал внутри коллектора, который нагревается.
- Отражение тепла: Прозрачный стеклянный или пластиковый корпус задерживает тепло, которое в противном случае могло бы излучаться. Это похоже на то, как теплица улавливает тепло внутри.
- Циркуляция: Холодная вода или другая жидкость циркулирует через коллектор, поглощая тепло.
Подробнее о плоских солнечных коллекторах
Начало страницы
Солнечные коллекторы с вакуумными трубками
Вакуумный трубчатый солнечный коллектор на крыше.
Кредит: NREL PIX 09501
Вакуумные трубчатые коллекторы представляют собой тонкие медные трубки, наполненные жидкостью, например водой, помещенные внутри более крупных герметичных прозрачных стеклянных или пластиковых трубок.
Вакуумные трубки более эффективно используют солнечную энергию и могут производить более высокие температуры, чем плоские коллекторы по нескольким причинам. Во-первых, конструкция трубки увеличивает доступную для солнца площадь поверхности, эффективно поглощая прямой солнечный свет под разными углами.Во-вторых, внутри прозрачного стеклянного корпуса трубок также создается частичный вакуум, что значительно снижает потери тепла во внешнюю среду.
Как это работает
- Солнечный свет: Солнечный свет попадает в темный цилиндр, эффективно нагревая его под любым углом.
- Отражение тепла: Прозрачный стеклянный или пластиковый корпус задерживает тепло, которое в противном случае могло бы излучаться. Это похоже на то, как теплица улавливает тепло внутри.
- Конвекция: Медная трубка, проходящая через каждый цилиндр, поглощает накопленное тепло цилиндра, в результате чего жидкость внутри трубки нагревается и поднимается к верхней части цилиндра.
- Циркуляция: Холодная вода циркулирует через верхнюю часть цилиндров, поглощая тепло.
Системы с вакуумированными трубками обычно дороже плоских коллекторов, но они более эффективны и могут обеспечивать более высокие температуры. Вакуумные трубы могут надежно производить очень горячую воду для периодического нагрева воды или нагрева воды по запросу, а также для многих промышленных процессов, и они могут производить достаточно тепла, чтобы справиться практически с любым отоплением или охлаждением помещения.
Подробнее о солнечных коллекторах с вакуумными трубками
Начало страницы
Концентрирующие солнечные системы
Этот набор концентрирующих солнечных коллекторов с параболическим желобом на крыше обеспечивает технологическое тепло для винодельни. Эти коллекторы имеют уникальную конструкцию, которая позволяет им вырабатывать не только тепло, но и электричество.
Кредит: SunWater Solar
Концентрирующие солнечные системы работают, отражая и направляя солнечную энергию с большой площади на маленькую.Меньшие светоотражающие решетки в форме чаши могут производить воду с температурой в несколько сотен градусов для промышленных или сельскохозяйственных процессов или для нагрева больших объемов воды, таких как бассейны курортных комплексов. Некоторые массивы работают с длинными параболическими желобами, которые концентрируют солнечный свет на трубе, проходящей по длине желоба, по которой переносится теплоноситель. Даже в более крупных системах используются поля зеркал для отражения солнечного света на центральную башню. Эти типы массивов производят пар высокого давления или другие перегретые жидкости для различных видов деятельности, от теплоемкой химической обработки до выработки электроэнергии.
Как это работает
- Солнечный свет: Солнечный свет попадает на отражающий материал (т. Е. На зеркальную поверхность), обычно имеющий форму желоба (показанного здесь) или тарелки.
- Отражение солнца: Отражающий материал перенаправляет солнечный свет в одну точку (для тарелки) или трубу (для желоба).
- Циркуляция: Холодная вода или специальный жидкий теплоноситель циркулирует по трубе, поглощая тепло.
Концентрационные системы способны производить чрезвычайно горячие жидкости для различных процессов, и они могут производить относительно большое количество энергии на каждый вложенный доллар. Однако эти системы, как правило, намного больше и сложнее, чем другие типы солнечных коллекторов, описанных выше, и имеют более высокую общую стоимость. Таким образом, концентрированная солнечная технология имеет тенденцию быть наиболее эффективной для крупномасштабных высокотемпературных применений, хотя более низкотемпературные применения могут все же быть рентабельными при определенных обстоятельствах.
Узнайте больше о концентрирующих солнечных системах
Начало страницы
Солнечные технологии отопления и охлаждения | Возобновляемое отопление и охлаждение: преимущество тепловой энергии
Солнечные тепловые технологии поглощают солнечное тепло и передают его на полезные цели, такие как отопление зданий или водоснабжение. Используется несколько основных типов гелиотермических технологий:
В дополнение к вышеупомянутым солнечным тепловым технологиям, такие технологии, как солнечные фотоэлектрические модули , могут производить электричество, а здания могут быть спроектированы так, чтобы улавливать пассивное солнечное тепло .
Солнечная энергия считается возобновляемым ресурсом, поскольку она непрерывно поступает на Землю от Солнца. Посетите веб-сайт EPA Clean Energy, чтобы узнать больше о нетепловых солнечных технологиях, а также о преимуществах и влиянии солнечной энергии на окружающую среду.
Солнечные коллекторы неглазурованные
Неостекленный солнечный коллектор на крыше бассейна и фитнес-центра.
Кредит: Альберт Нуньес, NREL 10651
Неглазурованный солнечный коллектор — одна из самых простых форм солнечной тепловой технологии.Теплопроводящий материал, обычно темный металл или пластик, поглощает солнечный свет и передает энергию жидкости, проходящей через теплопроводную поверхность или за ней. Этот процесс аналогичен тому, как садовый шланг, лежащий на открытом воздухе, поглощает солнечную энергию и нагревает воду внутри шланга.
Эти коллекторы описываются как «неглазурованные», потому что они не имеют стеклянного покрытия или «остекления» на коллекторной коробке для улавливания тепла. Отсутствие остекления создает компромисс. Неглазурованные солнечные коллекторы просты и недороги, но, не имея возможности удерживать тепло, они теряют тепло обратно в окружающую среду и работают при относительно низких температурах.Таким образом, неглазурованные коллекторы обычно лучше всего работают с небольшими и умеренными системами отопления или в качестве дополнения к традиционным системам отопления, где они могут снизить топливную нагрузку за счет предварительного нагрева воды или воздуха.
Солнечные коллекторы для обогрева бассейнов — это наиболее часто используемая неглазурованная солнечная технология в Соединенных Штатах. В этих устройствах часто используются черные пластиковые трубчатые панели, установленные на крыше или другой опорной конструкции. Водяной насос обеспечивает циркуляцию воды в бассейне непосредственно через трубчатые панели, а затем возвращает воду в бассейн с более высокой температурой.Хотя эти коллекторы используются в основном для обогрева бассейнов, они также могут предварительно нагревать большие объемы воды для других коммерческих и промышленных применений.
Как это работает
- Солнечный свет: Солнечный свет попадает на темный материал в коллекторе, который нагревается.
- Циркуляция: Холодная жидкость (вода) или воздух циркулирует через коллектор, поглощая тепло.
- Использование: Более теплая жидкость используется для таких применений, как обогрев бассейна.
Узнайте больше о неглазурованных солнечных коллекторах
Начало страницы
Солнечные коллекторы Transpired
На южной стене этого склада установлен солнечный коллектор.
Источник: Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США
Солнечные коллекторы с просвечиваемым воздухом обычно состоят из перфорированного металлического облицовочного материала темного цвета, установленного на существующей стене на южной стороне здания.Вентилятор втягивает наружный воздух через перфорацию в пространство за металлической обшивкой, где воздух нагревается до температуры на 30–100 ° F выше температуры окружающего воздуха. Затем вентилятор втягивает воздух в здание, где он распределяется через систему вентиляции здания.
Солнечный коллектор — это проверенная, но все еще развивающаяся технология солнечного отопления. Этот вид техники лучше всего подходит для обогрева воздуха и вентиляции помещений. Его также можно применять в различных производственных и сельскохозяйственных целях, например, для сушки сельскохозяйственных культур.
Как это работает
- Солнечный свет: Солнечный свет попадает на темную перфорированную металлическую облицовку, которая нагревается.
- Циркуляция: Циркуляционный вентилятор втягивает воздух через отверстия за металлической обшивкой, нагревая воздух, который затем втягивается в здание для распределения.
Узнайте больше о солнечных коллекторах воздуха Transpired
Начало страницы
Плоские солнечные коллекторы
Множество плоских солнечных коллекторов на крыше школы.
Кредит: Джо Райан, NREL 19690
Большинство плоских коллекторов состоят из медных трубок и других теплопоглощающих материалов внутри изолированного каркаса или корпуса, покрытого прозрачным стеклом (стеклом). Теплопоглощающие материалы могут иметь специальное покрытие, которое поглощает тепло более эффективно, чем поверхность без покрытия.
Плоские остекленные коллекторы могут эффективно работать в более широком диапазоне температур, чем неглазурованные коллекторы. Плоские коллекторы часто используются в дополнение к традиционным водогрейным котлам, предварительно нагревая воду, чтобы снизить потребность в топливе.Они также могут быть эффективны для обогрева помещений. Используя систему теплообмена, они могут надежно производить горячий воздух для больших зданий в светлое время суток.
Как это работает
- Солнечный свет: Солнечный свет проходит через стекло и попадает на темный материал внутри коллектора, который нагревается.
- Отражение тепла: Прозрачный стеклянный или пластиковый корпус задерживает тепло, которое в противном случае могло бы излучаться. Это похоже на то, как теплица улавливает тепло внутри.
- Циркуляция: Холодная вода или другая жидкость циркулирует через коллектор, поглощая тепло.
Подробнее о плоских солнечных коллекторах
Начало страницы
Солнечные коллекторы с вакуумными трубками
Вакуумный трубчатый солнечный коллектор на крыше.
Кредит: NREL PIX 09501
Вакуумные трубчатые коллекторы представляют собой тонкие медные трубки, наполненные жидкостью, например водой, помещенные внутри более крупных герметичных прозрачных стеклянных или пластиковых трубок.
Вакуумные трубки более эффективно используют солнечную энергию и могут производить более высокие температуры, чем плоские коллекторы по нескольким причинам. Во-первых, конструкция трубки увеличивает доступную для солнца площадь поверхности, эффективно поглощая прямой солнечный свет под разными углами. Во-вторых, внутри прозрачного стеклянного корпуса трубок также создается частичный вакуум, что значительно снижает потери тепла во внешнюю среду.
Как это работает
- Солнечный свет: Солнечный свет попадает в темный цилиндр, эффективно нагревая его под любым углом.
- Отражение тепла: Прозрачный стеклянный или пластиковый корпус задерживает тепло, которое в противном случае могло бы излучаться. Это похоже на то, как теплица улавливает тепло внутри.
- Конвекция: Медная трубка, проходящая через каждый цилиндр, поглощает накопленное тепло цилиндра, в результате чего жидкость внутри трубки нагревается и поднимается к верхней части цилиндра.
- Циркуляция: Холодная вода циркулирует через верхнюю часть цилиндров, поглощая тепло.
Системы с вакуумированными трубками обычно дороже плоских коллекторов, но они более эффективны и могут обеспечивать более высокие температуры. Вакуумные трубы могут надежно производить очень горячую воду для периодического нагрева воды или нагрева воды по запросу, а также для многих промышленных процессов, и они могут производить достаточно тепла, чтобы справиться практически с любым отоплением или охлаждением помещения.
Подробнее о солнечных коллекторах с вакуумными трубками
Начало страницы
Концентрирующие солнечные системы
Этот набор концентрирующих солнечных коллекторов с параболическим желобом на крыше обеспечивает технологическое тепло для винодельни.Эти коллекторы имеют уникальную конструкцию, которая позволяет им вырабатывать не только тепло, но и электричество.
Кредит: SunWater Solar
Концентрирующие солнечные системы работают, отражая и направляя солнечную энергию с большой площади на маленькую. Меньшие светоотражающие решетки в форме чаши могут производить воду с температурой в несколько сотен градусов для промышленных или сельскохозяйственных процессов или для нагрева больших объемов воды, таких как бассейны курортных комплексов. Некоторые массивы работают с длинными параболическими желобами, которые концентрируют солнечный свет на трубе, проходящей по длине желоба, по которой переносится теплоноситель.Даже в более крупных системах используются поля зеркал для отражения солнечного света на центральную башню. Эти типы массивов производят пар высокого давления или другие перегретые жидкости для различных видов деятельности, от теплоемкой химической обработки до выработки электроэнергии.
Как это работает
- Солнечный свет: Солнечный свет попадает на отражающий материал (т. Е. На зеркальную поверхность), обычно имеющий форму желоба (показанного здесь) или тарелки.
- Отражение солнца: Отражающий материал перенаправляет солнечный свет в одну точку (для тарелки) или трубу (для желоба).
- Циркуляция: Холодная вода или специальный жидкий теплоноситель циркулирует по трубе, поглощая тепло.
Концентрационные системы способны производить чрезвычайно горячие жидкости для различных процессов, и они могут производить относительно большое количество энергии на каждый вложенный доллар. Однако эти системы, как правило, намного больше и сложнее, чем другие типы солнечных коллекторов, описанных выше, и имеют более высокую общую стоимость. Таким образом, концентрированная солнечная технология имеет тенденцию быть наиболее эффективной для крупномасштабных высокотемпературных применений, хотя более низкотемпературные применения могут все же быть рентабельными при определенных обстоятельствах.
Узнайте больше о концентрирующих солнечных системах
Начало страницы
Солнечные технологии отопления и охлаждения | Возобновляемое отопление и охлаждение: преимущество тепловой энергии
Солнечные тепловые технологии поглощают солнечное тепло и передают его на полезные цели, такие как отопление зданий или водоснабжение. Используется несколько основных типов гелиотермических технологий:
В дополнение к вышеупомянутым солнечным тепловым технологиям, такие технологии, как солнечные фотоэлектрические модули , могут производить электричество, а здания могут быть спроектированы так, чтобы улавливать пассивное солнечное тепло .
Солнечная энергия считается возобновляемым ресурсом, поскольку она непрерывно поступает на Землю от Солнца. Посетите веб-сайт EPA Clean Energy, чтобы узнать больше о нетепловых солнечных технологиях, а также о преимуществах и влиянии солнечной энергии на окружающую среду.
Солнечные коллекторы неглазурованные
Неостекленный солнечный коллектор на крыше бассейна и фитнес-центра.
Кредит: Альберт Нуньес, NREL 10651
Неглазурованный солнечный коллектор — одна из самых простых форм солнечной тепловой технологии.Теплопроводящий материал, обычно темный металл или пластик, поглощает солнечный свет и передает энергию жидкости, проходящей через теплопроводную поверхность или за ней. Этот процесс аналогичен тому, как садовый шланг, лежащий на открытом воздухе, поглощает солнечную энергию и нагревает воду внутри шланга.
Эти коллекторы описываются как «неглазурованные», потому что они не имеют стеклянного покрытия или «остекления» на коллекторной коробке для улавливания тепла. Отсутствие остекления создает компромисс. Неглазурованные солнечные коллекторы просты и недороги, но, не имея возможности удерживать тепло, они теряют тепло обратно в окружающую среду и работают при относительно низких температурах.Таким образом, неглазурованные коллекторы обычно лучше всего работают с небольшими и умеренными системами отопления или в качестве дополнения к традиционным системам отопления, где они могут снизить топливную нагрузку за счет предварительного нагрева воды или воздуха.
Солнечные коллекторы для обогрева бассейнов — это наиболее часто используемая неглазурованная солнечная технология в Соединенных Штатах. В этих устройствах часто используются черные пластиковые трубчатые панели, установленные на крыше или другой опорной конструкции. Водяной насос обеспечивает циркуляцию воды в бассейне непосредственно через трубчатые панели, а затем возвращает воду в бассейн с более высокой температурой.Хотя эти коллекторы используются в основном для обогрева бассейнов, они также могут предварительно нагревать большие объемы воды для других коммерческих и промышленных применений.
Как это работает
- Солнечный свет: Солнечный свет попадает на темный материал в коллекторе, который нагревается.
- Циркуляция: Холодная жидкость (вода) или воздух циркулирует через коллектор, поглощая тепло.
- Использование: Более теплая жидкость используется для таких применений, как обогрев бассейна.
Узнайте больше о неглазурованных солнечных коллекторах
Начало страницы
Солнечные коллекторы Transpired
На южной стене этого склада установлен солнечный коллектор.
Источник: Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США
Солнечные коллекторы с просвечиваемым воздухом обычно состоят из перфорированного металлического облицовочного материала темного цвета, установленного на существующей стене на южной стороне здания.Вентилятор втягивает наружный воздух через перфорацию в пространство за металлической обшивкой, где воздух нагревается до температуры на 30–100 ° F выше температуры окружающего воздуха. Затем вентилятор втягивает воздух в здание, где он распределяется через систему вентиляции здания.
Солнечный коллектор — это проверенная, но все еще развивающаяся технология солнечного отопления. Этот вид техники лучше всего подходит для обогрева воздуха и вентиляции помещений. Его также можно применять в различных производственных и сельскохозяйственных целях, например, для сушки сельскохозяйственных культур.
Как это работает
- Солнечный свет: Солнечный свет попадает на темную перфорированную металлическую облицовку, которая нагревается.
- Циркуляция: Циркуляционный вентилятор втягивает воздух через отверстия за металлической обшивкой, нагревая воздух, который затем втягивается в здание для распределения.
Узнайте больше о солнечных коллекторах воздуха Transpired
Начало страницы
Плоские солнечные коллекторы
Множество плоских солнечных коллекторов на крыше школы.
Кредит: Джо Райан, NREL 19690
Большинство плоских коллекторов состоят из медных трубок и других теплопоглощающих материалов внутри изолированного каркаса или корпуса, покрытого прозрачным стеклом (стеклом). Теплопоглощающие материалы могут иметь специальное покрытие, которое поглощает тепло более эффективно, чем поверхность без покрытия.
Плоские остекленные коллекторы могут эффективно работать в более широком диапазоне температур, чем неглазурованные коллекторы. Плоские коллекторы часто используются в дополнение к традиционным водогрейным котлам, предварительно нагревая воду, чтобы снизить потребность в топливе.Они также могут быть эффективны для обогрева помещений. Используя систему теплообмена, они могут надежно производить горячий воздух для больших зданий в светлое время суток.
Как это работает
- Солнечный свет: Солнечный свет проходит через стекло и попадает на темный материал внутри коллектора, который нагревается.
- Отражение тепла: Прозрачный стеклянный или пластиковый корпус задерживает тепло, которое в противном случае могло бы излучаться. Это похоже на то, как теплица улавливает тепло внутри.
- Циркуляция: Холодная вода или другая жидкость циркулирует через коллектор, поглощая тепло.
Подробнее о плоских солнечных коллекторах
Начало страницы
Солнечные коллекторы с вакуумными трубками
Вакуумный трубчатый солнечный коллектор на крыше.
Кредит: NREL PIX 09501
Вакуумные трубчатые коллекторы представляют собой тонкие медные трубки, наполненные жидкостью, например водой, помещенные внутри более крупных герметичных прозрачных стеклянных или пластиковых трубок.
Вакуумные трубки более эффективно используют солнечную энергию и могут производить более высокие температуры, чем плоские коллекторы по нескольким причинам. Во-первых, конструкция трубки увеличивает доступную для солнца площадь поверхности, эффективно поглощая прямой солнечный свет под разными углами. Во-вторых, внутри прозрачного стеклянного корпуса трубок также создается частичный вакуум, что значительно снижает потери тепла во внешнюю среду.
Как это работает
- Солнечный свет: Солнечный свет попадает в темный цилиндр, эффективно нагревая его под любым углом.
- Отражение тепла: Прозрачный стеклянный или пластиковый корпус задерживает тепло, которое в противном случае могло бы излучаться. Это похоже на то, как теплица улавливает тепло внутри.
- Конвекция: Медная трубка, проходящая через каждый цилиндр, поглощает накопленное тепло цилиндра, в результате чего жидкость внутри трубки нагревается и поднимается к верхней части цилиндра.
- Циркуляция: Холодная вода циркулирует через верхнюю часть цилиндров, поглощая тепло.
Системы с вакуумированными трубками обычно дороже плоских коллекторов, но они более эффективны и могут обеспечивать более высокие температуры. Вакуумные трубы могут надежно производить очень горячую воду для периодического нагрева воды или нагрева воды по запросу, а также для многих промышленных процессов, и они могут производить достаточно тепла, чтобы справиться практически с любым отоплением или охлаждением помещения.
Подробнее о солнечных коллекторах с вакуумными трубками
Начало страницы
Концентрирующие солнечные системы
Этот набор концентрирующих солнечных коллекторов с параболическим желобом на крыше обеспечивает технологическое тепло для винодельни.Эти коллекторы имеют уникальную конструкцию, которая позволяет им вырабатывать не только тепло, но и электричество.
Кредит: SunWater Solar
Концентрирующие солнечные системы работают, отражая и направляя солнечную энергию с большой площади на маленькую. Меньшие светоотражающие решетки в форме чаши могут производить воду с температурой в несколько сотен градусов для промышленных или сельскохозяйственных процессов или для нагрева больших объемов воды, таких как бассейны курортных комплексов. Некоторые массивы работают с длинными параболическими желобами, которые концентрируют солнечный свет на трубе, проходящей по длине желоба, по которой переносится теплоноситель.Даже в более крупных системах используются поля зеркал для отражения солнечного света на центральную башню. Эти типы массивов производят пар высокого давления или другие перегретые жидкости для различных видов деятельности, от теплоемкой химической обработки до выработки электроэнергии.
Как это работает
- Солнечный свет: Солнечный свет попадает на отражающий материал (т. Е. На зеркальную поверхность), обычно имеющий форму желоба (показанного здесь) или тарелки.
- Отражение солнца: Отражающий материал перенаправляет солнечный свет в одну точку (для тарелки) или трубу (для желоба).
- Циркуляция: Холодная вода или специальный жидкий теплоноситель циркулирует по трубе, поглощая тепло.
Концентрационные системы способны производить чрезвычайно горячие жидкости для различных процессов, и они могут производить относительно большое количество энергии на каждый вложенный доллар. Однако эти системы, как правило, намного больше и сложнее, чем другие типы солнечных коллекторов, описанных выше, и имеют более высокую общую стоимость. Таким образом, концентрированная солнечная технология имеет тенденцию быть наиболее эффективной для крупномасштабных высокотемпературных применений, хотя более низкотемпературные применения могут все же быть рентабельными при определенных обстоятельствах.
Узнайте больше о концентрирующих солнечных системах
Начало страницы
Предотвращение перегрева солнечного коллектора
Даже полностью работающая солнечная гидронная система отопления может перегреваться, и это наиболее вероятно, когда много солнца, но тепло не может быть использовано. Это может произойти по нескольким причинам, но чаще всего:
1) когда тепло не требуется, потому что все тепловые нагрузки удовлетворены, или
2) из-за сбоя питания, отказа насоса или отказа управления в системах сбора, хранения или распределения тепла.
Тепло начинает накапливаться в контуре солнечного коллектора, когда оно не используется для полезного обогрева, и, если его не остановить, может достичь точки кипения жидкости. Перегрев часто сопровождается стуком парового удара в солнечном коллекторе тепла; пропиленгликоль может начать готовиться и стать коричневым, а затем становится все более кислым. Шлейф пара может появиться на любом открытом поплавковом вентиляционном отверстии, и из предохранительного клапана может начаться капание или выброс жидкости, в то время как предохранительный клапан давления и температуры (P&T) на резервуарах для хранения тепла может начать выпускать горячую воду.
Условия, вызывающие перегрев, могут происходить только один раз в год или даже реже, но когда это происходит, результаты могут варьироваться от раздражающих неудобств в лучшем случае до серьезного отказа системы отопления в худшем. Правильно спроектированная система всегда должна использовать средства управления и стратегии, которые могут безопасно и надежно рассеивать избыточное тепло, а также обеспечивать температурную защиту во время отключения электроэнергии в солнечный день.
Четыре основных «отказоустойчивых» стратегии солнечного перегрева
Предотвращение перегрева входит практически в каждую систему солнечного отопления, которую мы проектируем в наши дни, и как пассивные, так и активные множественные стратегии обычно включаются вместе, чтобы обеспечить подход «пояс и подтяжки».Четыре самых надежных и безотказных метода, которые мы используем сегодня, следующие:
1. Термосифонная система ребер самоохлаждения (TSC). Ребристые трубы TSC могут быть добавлены к любому блоку плоских солнечных коллекторов, если трубопровод внутри коллектора соответствует некоторым простым требованиям. То есть коллекторы должны иметь конфигурацию «арфы» с внутренними коллекторами (верхним и нижним), расположенными горизонтально, с прямыми параллельными стояками, идущими вертикально.
На Рис. 98-1 показана фотография системы пассивных самоохлаждающихся ребристых труб, установленной на задней части группы из восьми солнечных коллекторов.
Термосифонирование можно определить как движение жидкости по водопроводному контуру, вызванное только разницей температур в контуре (жидкость «перекачивается» только за счет тепла). Горячая жидкость менее плотная, чем холодная, поэтому, когда она содержится в петле, холодная жидкость имеет тенденцию падать вниз, а горячая жидкость имеет тенденцию всплывать вверх. Этот принцип можно использовать для рассеивания солнечного тепла за счет включения охлаждающих ребер в контур.
Рисунок 98-2 показывает, насколько простыми могут быть детали водопровода при подключении петли TSC к группе плоских коллекторов.Обычный наклон панели позволяет горячей жидкости подниматься вверх за счет естественной конвекции, а наклон ребристых труб в задней части позволяет холодной жидкости стекать вниз и снова попадать в нижнюю часть коллекторов. В солнечный день, если солнечный циркуляционный насос останавливается, поворотный обратный клапан внизу легко открывается в ответ на тепловой поток, и охлаждение происходит за счет естественной конвекции. Когда циркуляционный насос включается, охлаждающий контур закрывается с помощью пассивного обратного клапана, который закрывается в ответ на относительно высокий расход и давление, создаваемые циркуляционным насосом.Таким образом, охлаждающий поток термосифона продолжается, пока солнце излучает тепло, и останавливается, когда циркуляционный насос снова включается.
2. Система ребер самоохлаждения (PVSC) с фотоэлектрическим приводом. Некоторые солнечные коллекторы не могут должным образом охлаждаться термосифонным потоком. Например, коллекторы с плоской пластиной, в которых используется змеевидный путь потока или другое внутреннее трубопроводное устройство «без арфы», не могут использоваться с системой TSC, описанной выше. К массиву коллектора все еще может быть добавлен контур охлаждающих ребер, но он должен перекачиваться с помощью солнечного циркуляционного насоса, чтобы обеспечить надлежащий поток для охлаждения.В этих случаях мы используем фотоэлектрический солнечный циркулятор и небольшую солнечно-электрическую панель, чтобы система охлаждения продолжала работать от солнечной энергии даже во время сбоя в электросети.
На рис. 98-3 показана фотография фотоэлектрической системы самоохлаждения, в которой используется модуль солнечного насоса Caleffi с опцией фотоэлектрического насоса, установленной в начальной школе в Альбукерке.
3. Конфигурация солнечного коллектора с обратным стоком. Солнечные системы отопления с обратным дренажом также отлично выдержат перегрев и перебои в подаче электроэнергии, потому что коллекторы опустошаются, когда солнечный насос теряет мощность.Вода чаще всего используется в качестве собирающей жидкости и стекает под действием силы тяжести по подающим трубам в сборный резервуар для слива в закрытом помещении всякий раз, когда система отключается. Воздух из обратного дренажного бака заменяет воду, которая защищает панели и трубы на открытом воздухе от замерзания или кипения. Панели и подводящие трубы должны быть правильно подобраны по размеру и наклонены для быстрого и полного дренажа во избежание поломки при замерзании. Змеевиковые коллекторы и некоторые другие типы коллекторов с плоской пластиной и откачиваемой трубкой нельзя использовать в конфигурации с обратным сливом, поэтому следуйте рекомендациям производителя.
4. Конфигурация перегрева парообратного коллектора. Другой распространенной пассивной стратегией, используемой в гликолевых системах с замкнутым контуром, является метод расширительного бака с обратным паром. Это не предотвращает попадание высокотемпературного пара в солнечные тепловые коллекторы во время сбоя питания, а скорее позволяет пару заполнять панели без потери какой-либо жидкости коллектора. Объем жидкого гликоля, который вытесняется паром, когда он накапливается внутри горячих коллекторов, будет пытаться найти убежище в расширительном баке гликоля.Если расширительный бак достаточно большой и был установлен с надлежащим давлением воздуха, это может предотвратить утечку гликоля через предохранительный клапан. После захода солнца, когда пар конденсируется внутри коллекторов, а давление воздуха (в расширительном баке) заставляет гликоль обратно в солнечный контур, система будет продолжать работать в обычном режиме до тех пор, пока электрическая мощность, насосы, клапаны и элементы управления будут не поврежден и давление гликоля не упало слишком низко.
Системы обратного пара работают лучше всего, когда коллекторы и соединительный трубопровод устанавливаются так, чтобы спускать воду вниз к расширительным бакам, подобно тому, как выполняется обратная дренажная канализация.Приемный объем жидкости в расширительном баке должен быть как минимум равен объему жидкости самих солнечных коллекторов.
Другие распространенные стратегии солнечного перегрева (менее отказоустойчивые)
Некоторые из наиболее распространенных сегодня методов контроля солнечного перегрева не являются полностью надежными. Это связано с тем, что они обычно зависят от активного электрического управления или циркуляционных насосов для обеспечения охлаждения солнечных коллекторов. В наших установках мы комбинируем методы обеспечения отказоустойчивости, описанные выше, с большинством стандартных средств управления, перечисленных ниже, чтобы обеспечить наиболее полное и избыточное управление перегревом.Так, например, мы обычно комбинируем числа 1 и 4 выше с A, B, C и E ниже в большинстве наших недавних установок.
A. Наклон или фиксированное затенение коллектора. В любой солнечной комбинированной системе необходимо тщательно продумывать наклон коллектора, чтобы максимизировать сбор тепла в сезон, когда это необходимо, и минимизировать его, когда в нем нет необходимости. Например, крутой наклон от 65 градусов к вертикали будет способствовать зимнему сбору и избавит от значительной части летней жары в большинстве стран США.С. локации. Крутой наклон можно также увеличить с помощью тщательно спроектированного фиксированного свеса крыши для летнего затенения (обычно на стеновых панелях), чтобы при необходимости еще больше снизить приток тепла летом.
Б. Ночное циркуляционное охлаждение резервуара через коллектор. Плоские панели можно использовать ночью для охлаждения. Это известно как радиационное охлаждение ночного неба (NSRC). Охлаждение NSRC может быть выполнено с использованием застекленных плоских солнечных панелей или, что еще лучше, с использованием неглазурованных плоских панелей (часто используемых для обогрева бассейнов).Во многие недавние установки мы включили настройки управления, которые позволяют охлаждать теплые полы в ночное время летом за счет включения солнечных коллекторов в обратном направлении в ночное время. Аналогичные функции управления могут быть запрограммированы для отвода тепла в ночное время от перегрева водяных баков, когда накопленное тепло не расходуется.
C. Активный отвод тепла (на землю, фанкойл или зону). Распространенной практикой является программирование системы управления для рассеивания тепла с использованием теплоаккумулирующей способности существующих резервуаров для горячей воды, пола гаража, тающего льда тротуара (или других обычных зон нагрева кладки) для контролируемого охлаждения коллекторов.В некоторых случаях это может быть использовано в качестве накопителя тепла для предварительного нагрева пола гаража на зиму или для выполнения другой полезной стратегии накопления тепла.
Существующие конвекторы с ребристыми трубами или фанкойлы также иногда используются для прерывистого охлаждения. При правильном управлении комфорт человека не снижается, и пар предотвращается в коллекторах с использованием существующих контуров в полу или в земле. Использование существующего оборудования распределения тепла для контроля перегрева может устранить необходимость в более сложных надстройках системы охлаждения.Такой подход может продлить срок службы солнечного нагревательного оборудования, поддерживая его в более умеренном температурном диапазоне во время нормальной работы. Однако он не будет обеспечивать температурную защиту во время отключения электроэнергии в солнечный день, если не будет включена автоматическая аварийная подача электроэнергии.
D. Тепловой разъединитель OEM, вентиляция или рассеивание тепла. Узнайте у предпочитаемого вами производителя оригинального оборудования (OEM) поставщика солнечного оборудования, что нового в системе охлаждения. Производители солнечных батарей задумывались об этом уже некоторое время, и наряду с новыми элементами управления некоторые из них придумали и другие интересные продукты.Например, Apricus и Butler Sun Solutions предоставляют оборудование для отвода тепла, которое работает за счет отвода жидкости с тепловым расширением в систему охлаждения.
Также производители коллекторов задумались над охлаждением. Некоторые вакуумные трубчатые коллекторы (например, Thermomax) имеют отключение по верхнему пределу температуры, встроенное в каждую трубку, а EnerWorks предлагает модель коллектора с плоской пластиной, которая включает систему вентиляции, активируемую теплом, встроенную в раму. Эти OEM-стратегии охлаждения сильно отличаются друг от друга и предназначены для их собственных комплексных систем, которые обычно доступны с небольшими конструкциями для нагрева воды для бытового потребления.
E. Обдув P&T горячей воды. Каждый резервуар для горячей воды под давлением должен иметь P&T клапан из соображений безопасности, требуемых правилами водоснабжения. Когда водяной бак, нагретый солнечными батареями, становится слишком горячим, продувка P&T охлаждает его добавлением подпиточной воды, поскольку перегретая вода сдувается. Клапан P&T не предназначен для управления работой, поэтому, когда это произойдет, скрестите пальцы и надейтесь, что клапан P&T перестанет протекать позже, когда все остынет. Это последняя система охлаждения, которая не рекомендуется для нормальной работы.
Заявление об ограничении ответственности: Эти статьи предназначены для жилых и небольших коммерческих зданий площадью менее десяти тысяч квадратных футов. Основное внимание уделяется гликоль / гидронным системам под давлением, поскольку эти системы могут применяться в зданиях самых разных геометрических форм и ориентации с небольшими ограничениями. Торговые марки, организации, поставщики и производители упоминаются в этих статьях только в качестве примеров для иллюстрации и обсуждения и не представляют собой каких-либо рекомендаций или одобрения.Предыдущие выпуски этой рубрики можно найти в архивах на сайтах TMB Publishing и SolarLogic LLC.
Bristol Stickney занимается проектированием, производством, ремонтом и установкой систем солнечного водяного отопления более 30 лет.