Цвет или свет: Природа цвета. Рассказываем, что такое цвет и CRI

Природа цвета. Рассказываем, что такое цвет и CRI

Наши продвинутые заказчики, когда приобретают светильники для личного пользования или для своих любимых сотрудников и беспокоятся о комфорте для глаз, интересуются показателем под названием «CRI», но про него мало кто слышал даже в 2018 году. Мы уже говорили о цветовой температуре, и теперь, продолжая обзор основных характеристик светодиодного освещения, мы расскажем что такое CRI, почему этот параметр так важен, и остановимся на, казалось бы, простом, но очень интересном вопросе: «как видимые и привычные для нас объекты обретают свой цвет?» и как выбрать светильники, чтоб видеть естественные цвета вокруг себя.

Знания из этой статьи помогут вам всегда выбирать качественные и экономичные светильники домой, в офис или на улицу, и навсегда забыть про искажение цветов и усталость глаз. Особенно важно понимание индекса CRI будет для тех людей, чьи профессии напрямую связаны с цветом: художники, колористы, реставраторы кожаных изделий, визажисты или парикмахеры.

Но даже в магазине или офисе высокая цветопередача способствует улучшению «картинки» и положительный эффект заметен каждому посетителю, особенно в помещении без окон.

Природа цвета или откуда он вообще берется?

Видимый нами солнечный белый свет, как мы уже говорили ранее, представляет собой спектр различных цветовых тонов. В этом вы можете ещё раз убедиться сами и даже продемонстрировать себе и ребенку такой простой эксперимент: возьмите призму (толстое оргстекло, любую другую толстую прозрачную пластмассу) и поставьте её под солнечные лучи.

Увидели разноцветные полосы? Это и есть спектр цветовых тонов, из которых состоит солнечный свет. Каждый цвет спектра на самом деле является электромагнитной волной, цвет которой характеризуется таким параметром как длина волны. Длина волны измеряется в нанометрах (нм). Это как миллиметр, только ещё в миллион раз меньше.

Таким образом, видимый свет представляет собой набор таких волн (тот самый спектр) и каждый цвет в спектре – это ни что иное, как

электромагнитная волна определенной длины. То есть любое излучение, видимое или невидимое – это электромагнитные волны, а цвет волны определяется ее длиной в диапазоне видимого электромагнитного излучения – 380-780 нанометров.

Например, красный цвет имеет длину волны 640 нм, зеленый – 545 нм, а синий 450 нм. Эти параметры особенно важно учитывать при выборе фитосветильников для ваших растений.

Помимо видимого излучения (полный диапазон – 380-780 нм) существуют также излучения с ещё меньшей длиной волны, такие как рентгеновское и ультрафиолетовое. Они тоже представляют собой электромагнитные волны, только с очень высокой проникающей способностью. Самые длинные – это радиоволны, их длина может достигать десятки и даже сотни метров, они могут распространяться на большие расстояния и предназначены для передачи звуковой и цифровой информации.

Но откуда появляются цвета?

Теперь снова вернемся к вопросу о цвете окружающих нас объектов. Посмотрите вокруг − рядом с вами множество предметов, освещенных солнечными лучами. Цвет окружающих предметов – это результат отражения определенной длины волны (а длиной волны, как мы уже поняли, измеряется ее цвет). Зелёный газон воспринимается нами именно в зелёном цвете потому, что его поверхность отражает только зелёную (520-580 нм) составляющую спектра светового потока (будь то солнце или лампочка в качестве источника), а остальные цветовые составляющие поглощаются.

Если же при освещении естественным белым светом объект полностью поглощает все световые составляющие спектра, тогда он будет видим для нас в черном цвете. К примеру, черный камень Обсидиан даже при ярком свете остается черным. Кстати, заметьте, что предметы черного цвета нагреваются на солнце сильнее остальных, и это не только от того, что они поглощают весь цветовой спектр солнечных лучей, но ещё и тепловое излучение солнца.

Но если есть полное поглощение света, то имеет место быть и полное отражение. Когда весь спектр светового луча белого света отражается от поверхности предмета, то предмет принимает белый цвет.

Пример полного поглощения и полного отражения света

Почему трава зеленая, камень черный, а кружка белая?

Способность тел поглощать и отражать видимый свет обусловлена молекулярной структурой вещества.
Проще осознать это на примере. Листья деревьев летом зелёного цвета, а осенью они уже жёлтые. Спектр светового излучения в данном случае не изменился (солнце, т.е. наш источник света, каким было, таким и осталось) – в разные времена года менялась молекулярная структура вещества листьев, поэтому после того, как они опали, они уже не способны отражать зелёную составляющую спектра и отражают только жёлтую или даже красную составляющие.

Некоторые представители животного мира способны самостоятельно изменять окраску своего тела, приобретая цвет вне зависимости от источника света. Структура кожи таких животных содержит пигментсодержащие и светоотражающие клетки, которые способны быстро перемешиваться между собой, изменяя молекулярную структуру и образуя различные цветовые сочетания. Такой процесс используется для маскировки и называется физиологической сменой цвета или мимикрией цвета.

В темноте все черное, потому что объектам «нечего отражать»

Но почему же зелёная трава, кроны деревьев или песчаные холмы – все они ночью предстают перед нами в черном цвете? Потому что здесь нет отражения или поглощения цвета. В данном случае наблюдается полное отсутствие света, а отсутствие света – есть чёрный цвет. То есть черный цвет может быть как следствием полного поглощения света (как у камня обсидиан, который черный всегда вне зависимости от того темно или светло), так и результатом полного отсутствия света, когда все окружающие объекты перестают что-либо поглощать или отражать, так как свет попросту отсутствует.

Цвет объекта легко можно изменить

В продаже существуют RGB светильники (от слов red, green, blue) с по канальным ручным управлением цветом, например с помощью протокола DMX, таким образом вы можете полностью выключить красный (red) спектр в вашем светильнике или светодиодной ленте и красная банка Coca-Cola станет для вас полностью черной, такой же, как ее содержимое внутри, так как красного цвета (читай электромагнитной волны длиной ±640 нм) в помещении нет и красный свет попросту от нее не отражается, ведь окрашенная в красный цвет банка из-за своей молекулярной структуры не может отражать ничего, кроме красного цвета, которого нет, потому что мы его выключили, поэтому красный цвет объекта мы не увидим и банка станет черной.

Цвета без света не существует. Все просто – именно свет и его спектр порождает цвет.
Цвет объекта зависит от состава спектра электромагнитного излучения, которое на него излучается, и длины волн, которые в нем содержатся в определенных пропорциях.
И именно от качества света (светового потока) и его уровня CRI зависят цвета вокруг вас.

Свет – физическое явление, а вот цвет – явление физиологическое

Итак, пора разделить понятие «свет» от понятия «цвет». Свет – это видимое электромагнитное излучение, которое испускается источником с определённым спектральным составом (иначе говоря − набором волн разной длины).
Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения (субъективного!). Мы не видим цвет лучей света, мы видим лишь цвет окружающих нас вещей, которые освещаются этим светом. Но и один и тот же цвет разные люди воспринимают по-разному, хотя спектральный состав источника света при этом одинаковый.

Объективно будет оценивать цвет длиной волны.

Белый (солнечный) свет является эталоном светового излучения, он содержит в себе весь видимый для наших глаз спектр цветов. В белом свете мощность всех его компонентов (смесь электромагнитных волн) равная. Остальные смеси – объективно не белые.
Как противоположность белому свету можно рассматривать черный цвет, но только при условии отсутствия света вообще. Ведь черный цвет может быть результатом и полного поглощения света, как у камня обсидиан или черного автомобиля – тогда это будет субъективная оценка.

Освещение солнечным светом в полдень дает нам возможность увидеть 100% цвет (истинный цвет) предметов, а наши светильники на 95% соответствуют цветопередаче солнечного излучения. Сегодня это околопредельный для отрасли показатель, но каждый производитель светодиодов грезит полным соответствием истинному цвету. И как только всё это станет доступным к промышленному производству – сразу же появится в нашей линейке светильников.

Цвет объекта не заложен в нем от природы

Если окружающие нас предметы осветить световым источником красного или синего света, то практически все цвета будут видимы для нас в красных или синих цветовых тонах, потому что в спектрах этих двух цветовых источников попросту нет других цветов.

Таким образом, можно сделать вывод о том, что цвет объекта определяется именно светом, которым этот объект освещается. А способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря – физическими свойствами объекта. Один и тот же объект под разным освещением может выглядеть по-разному – цвет зависит от источника света. Или наоборот, один и тот же объект под одинаковым освещением может выглядеть по-разному – значит изменился его молекулярный состав.

Цвет предмета не заложен в нем от природы! От природы в нем заложены только физические свойства: отражать и поглощать свет.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

  • Первое условие. Свой цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! В темноте красная краска в банке будет выглядеть черной, хотя по своему молекулярному составу она отражает красный свет. В темной комнате мы не видим и не различаем цветов, потому что их нет. Есть только черный цвет всего окружающего пространства и находящихся в нем предметов;
  • Второе условие. Цвет объекта зависит от цветового тона (и как следствие, от цветовой температуры) освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета;
  • И наконец, третье условие. Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект. Также, можно сказать, что цвет зависит от восприятия – разные люди по-разному воспринимают свет одного и того же спектрального состава.

Так а что такое CRI и для чего он нужен?

Простыми словами можно сказать так: CRI (индекс цветопередачи) – это качественная характеристика света (светового потока), излучаемого светильником, которая показывает нам насколько этот самый свет, генерируемый прибором, по своему составу соответствует эталону – истинному солнечному. Индекс цветопередачи следует отличать от цветовой температуры – это разные параметры.

Теперь, прочитав этот материал, вы понимаете природу цвета и какие условия влияют на наше цветовое восприятие окружающих вещей. В предыдущей статье мы рассказывали о понятии цветовой температуры и говорили, что она является характеристикой цветового тона светового потока. Но на практике случается так, что два источника освещения с одинаковыми значениями цветовой температуры дают разные цветовые оттенки. На фото изображена композиция тюльпанов при солнечном свете и при освещении светодиодной лампой.

Как вы видите, даже при одинаковой цветовой температуре источников света, наблюдается различие в цветовом восприятии этих изображений: правое изображение имеет отличительный желтый оттенок. Так случается из-за низкого CRI в светодиодной лампе, показатель которого здесь равен RA 75.

Индекс CRI как критерий оценки качества светильника

Чтобы не допустить искажения цветов и чтобы все цвета максимально соответствовали видимым цветам при солнечном эталонном свете, перед покупкой для оценки качества светодиодных светильников используют понятие CRI (colour rendering index — индекс цветопередачи, обозначается Ra) – параметр, который показывает нам, насколько цвет объекта, освещенного естественным белым светом, соответствует цвету объекта, освещённого искуственным источником света.

Особенно важно обращать внимание на высокие показатели CRI при выборе освещения для дома, детских учебных заведений и детских садов. Это важно, потому что у детей в раннем возрасте формируется цветовосприятие и связанные с ним ассоциации окружающих вещей. Кроме того, качественный свет необходим для учебных и творческих процессов, а также непосредственно влияет на психическое состояние здоровья.

В нашем интернет-магазине «Технологии света» представлены офисные квадратные LED светильники ДВО TL-ЭКО School (современный аналог растровых светильников ЛВО 4х18), которые обладают рекордным для своего ценового сегмента показателем CRI, равным 95.7, и это значит, что цвета максимально соответствуют видимым при освещении того же самого пространства солнечным светом. Это стало возможным благодаря использованию в светильнике светодиодов Osram Duris® S 5 GW PSLR32.CM от лидера в сфере освещения – компании OSRAM OS (подробнее о нашем поставщике светодиодов можете прочитать в нашей публикации). Причем все приведенные выше высокие значения CRI подтверждены сертификатами и протоколами испытаний.

Светильники TL-ЭКО сертифицированы для применения в образовательных учреждениях и имеют сан-гигиен сертфикиат.

Цвет – это информация

Завершая нашу публикацию, скажем, что любой цвет – это информация. По желтому цвету мы отличаем цитрусовые на прилавке, по зеленому цвету мы сразу видим на том же прилавке петрушку и зелень. По их же цвету мы определяем их свежесть (молекулярную структуру). Художнику, колористу или визажисту нужна будет уже более тонкая и подробная информация – профессионалу нужно видеть все цветовые переходы и градиенты, чтоб качественно выполнять свою работу.

Качество и полнота этой информации зависит от того, какое освещение применяется для того или иного пространства. В крупных ритейлерских сетях даже действуют специальные правила установки светильников в торговых залах: для того, чтобы подчеркнуть аппетитный вид выпечки, фруктов и овощей, их освещают теплым светом 2700K с уровнем CRI не менее Ra 90, а для освещения зон с морепродуктами применяют светильники с цветовой температурой 5000К и индексом цветопередачи не менее 80 – нейтральный белый спектр излучения подчеркивает свежесть рыбы.

Мы рады представить для вас широкий ассортимент по-настоящему качественных светодиодных светильников TL, повышающих комфорт. В нашем самом полном каталоге магазина «Технологии света» вы можете найти и купить по выгодным ценам все виды современной продукции TL-LED:

  • TL-PROM – алюминиевые светильники ДСП с повышенной защитой от воздействия окружающей среды и широкими возможностями применения благодаря вторичной оптике собственного производства TL-Lens Industrial;
  • TL-STREET – всепогодные решения ДКУ с 5 летней гарантией для освещения любых открытых пространств, неотапливаемых помещений, площадей и автомагистралей. Имеют в своем арсенале 3 вида оптики, в том числе TL-Lens Magistral. Разительно превосходят по эффективности свои консольные аналоги ДНаТ/ДРЛ, а также LED светильники конкурентов;
  • TL-ЭКО 236 – пластиковые светильники ДСП (современный LED аналог ЛСП 2х36) с широким светорассеиванием и со светодиодными модулями TL-ЭКО, которые применяются и в офисном освещении. Могут быть изготовлены со светодиодами серии School (позволяют увидеть больше цветов) в рамках программы по изготовлению несерийных светильников по индивидуальному заказу «Особая серия»;
  • TL-PROM FITO – светильники для досветки или 100% искусственного освещения различных овощных культур, ягод и цветов. Наши фитосветильники применяются в зимних садах, в уютных домашних и даже промышленных теплицах;
  • TL-PROM TRADE – линейные светодиодные светильники с тремя типами креплений и рассеивателей и возможностью заказа светильника в нужном вам цвете. Широко применяются в торговых залах, салонах красоты. Благодаря своей защите IP65 могут использоваться для освещения органов управления станками или подсветкой над рабочими столами в запыленном цеху наряду с тем, что изящно впишутся в лофт пространство.

И можно не выбегать на улицу со свежеокрашенной деталью, сверяясь с солнцем!
21 век в самом своем разгаре.

Какие делаем выводы?

Для кого-то из вас понимание того, что цвета не существует, оказалось открытием, но мы привели множество доказательств и примеров, чтобы вы смогли это осознать и убедиться в этом сами. Понимание природы цвета даст вам возможность грамотно подбирать необходимые для ваших задач светодиодные светильники.

Конкретно для него очень важно качественное освещение рабочей зоны

  • Всегда обращайте внимание на цветовую температуру и на показатели цветопередачи CRI (Ra)
  • Перед покупкой смотрите на тесты и протоколы испытаний светильников
  • Всем нашим заказчикам мы рекомендуем ознакомиться с такими важными показателями светильников и всей осветительной установки, как экономичность и окупаемость, и почему именно наши таганрогские светильники признаны лучшими по этим критериям и рекомендованы для бизнеса (подробности читайте здесь)

Остались вопросы или ничего не поняли?

Если у вас возникли трудности при выборе или вы не хотите углубляться в теоретические знания, или может быть просто хотите пообщаться с нами – обращайтесь к нам или пишите в онлайн поддержку и мы ответим на все ваши вопросы и поможем с выбором освещения, а при необходимости составим светотехнический проект, применяя весь накопленный опыт наших специалистов в технологиях экономичного света 21 века.

«Свет или цвет?» — Яндекс Кью

Популярное

Сообщества

Арыстанбек Шингожин

  ·

1,9 K

ОтветитьУточнить

Elena Belousova

30

Домохозяйка, увлекаюсь вышивкой и садоводством .  · 21 дек 2020

Свет убивает патогенные бактерии

Ученые из университета Стратклайда (Глазго, Шотландия) разработали новый метод борьбы с устойчивыми к антибиотикам патогенными бактериями в больничной среде. Он заключается в применении света высокой интенсивности. Новый метод обеззараживания оказался намного эффективнее, чем обычная уборка и дезинфекция. Как объясняет микробиолог Джон Андерсон, при этом используется «узкий спектр видимых длин волн, которые намагничивают молекулы, содержащиеся в бактериальной среде».

Кто является источником света? «И сказал Бог: «Пусть будет свет». И появился свет»(Бытие 1:3) .

Воздействие цвета на эмоции.

Рекламщики тщательно подбирают цвета и цветовые комбинации, учитывая ваши желания, пол и возраст. Для дизайнеров, модельеров и художников тоже не секрет, что цвета способны вызывать различные эмоции. Как три цвета влияют на вас?

КРАСНЫЙ цвет : он часто ассоциируется с энергией, войной и опасностью. Этот цвет оказывает сильное эмоциональное воздействие и может ускорять обмен веществ, увеличивать частоту дыхания и повышать артериальное давление.

ЗЕЛЕНЫЙ цвет : оказывает противоположное влияние, поскольку он замедляет обмен веществ и расслабляет. Этот умиротворяющий цвет часто ассоциируется с покоем и безмятежностью. Вид зеленых холмов и садов успокаивает нас.

БЕЛЫЙ цвет : часто ассоциируется со светом, безопасностью и чистотой. Его также связывают с добродетельностью, невинностью и непорочностью.

Цвет помогает нам собирать и обрабатывать информацию. Цвет влияет на наши эмоции. Цвет помогает запоминать важные истины. Цвет — чудесный дар нашего Творца, помогающий нам радоваться жизни.

Комментировать ответ…Комментировать…

Первый

Ledoni

Производство надежных светодиодных светильников в Санкт-Петербурге   · 12 янв 2021  · ledoni.ru

Отвечает

Антон Г.

Свет — это видимое излучение у которого есть цвет (это частота этого излучения). Так же для упрощения придумали три разновидности цвета света: теплый, нейтральный и холодный.

Комментировать ответ…Комментировать…

Sagittarius

9,2 K

Не кочегары мы, не плотники.  · 24 нояб 2018

Если вас интересует правописание или употребление, то это 2 разных слова. Свет — это электромагнитное излучение, воспринимаемое зрением. Цвет — это окраска. Если вопрос в чем-то другом, уточните его.

Арыстанбек Шингожин

24 ноября 2018

Ну, например: «Машина проехала на красный свет». Тут, вроде бы, красный это цвет, но в данном случае будет свет… Читать дальше

Комментировать ответ…Комментировать…

Вы знаете ответ на этот вопрос?

Поделитесь своим опытом и знаниями

Войти и ответить на вопрос

Цвета света — Science Learning Hub

Добавить в коллекцию

  • + Создать новую коллекцию
  • Свет состоит из длин световых волн, и каждая длина волны соответствует определенному цвету. Цвет, который мы видим, является результатом отражения длин волн обратно к нашим глазам.

    Видимый свет

    Видимый свет — это небольшая часть электромагнитного спектра, к которой человеческий глаз чувствителен и которую может обнаружить.

    Волны видимого света имеют разные длины волн. Цвет видимого света зависит от его длины волны. Эти длины волн находятся в диапазоне от 700 нм на красном конце спектра до 400 нм на фиолетовом конце.

    Белый свет на самом деле состоит из всех цветов радуги, поскольку он содержит все длины волн и описывается как полихроматический свет. Свет от факела или Солнца является хорошим примером этого.

    Свет от лазера монохроматичен, что означает, что он дает только один цвет. (Лазеры чрезвычайно опасны и могут привести к необратимому повреждению глаз. Необходимо соблюдать особую осторожность, чтобы свет от лазера никогда не попадал в глаза.)

    Цвет объектов

    Объекты кажутся разными цветами, потому что они поглощают одни цвета (длины волн) и отражают или пропускают другие цвета. Цвета, которые мы видим, — это длины волн, которые отражаются или передаются.

    Например, красная рубашка выглядит красной, потому что молекулы красителя в ткани поглощают длины волн света в фиолетово-синей части спектра. Красный свет — это единственный свет, который отражается от рубашки. Если бы на красную рубашку падал только синий свет, рубашка казалась бы черной, потому что синий цвет поглощался бы, и красный свет не отражался бы.

    Белые объекты кажутся белыми, потому что они отражают все цвета. Черные объекты поглощают все цвета, поэтому свет не отражается.

    Определение цвета

    Сетчатка наших глаз содержит два типа фоторецепторов – палочки и колбочки. Колбочки определяют цвет. Палочки позволяют нам видеть вещи только в черном, белом и сером цвете. Наши колбочки работают только при достаточно ярком свете, но не при очень тусклом свете. Вот почему вещи выглядят серыми, и мы не можем видеть цвета ночью, когда свет тусклый.

    В человеческом глазу есть три типа колбочек, которые чувствительны к коротким (S), средним (M) и длинным (L) длинам волн света в видимом спектре. (Эти колбочки традиционно известны как чувствительные к синему, зеленому и красному, но, поскольку каждая колбочка на самом деле реагирует на диапазон длин волн, в настоящее время более распространены обозначения S, M и L. )

    Эти три Типы цветовых рецепторов позволяют мозгу воспринимать сигналы от сетчатки как разные цвета. По некоторым оценкам, люди способны различать около 10 миллионов цветов.

    Смешение цветов

    Основными цветами света являются красный, зеленый и синий. Смешивая эти цвета в разных пропорциях, можно получить все цвета света, который мы видим. Так работают экраны телевизоров и компьютеров. Если вы посмотрите на экран через увеличительное стекло, то увидите, что используются только эти три цвета. Например, красный и зеленый свет используются для того, чтобы наш мозг воспринимал изображение как желтое.

    Когда цветные огни смешиваются друг с другом, это называется аддитивным смешением. Красный, зеленый и синий являются основными цветами для аддитивного смешивания. Если все эти цвета света попадают на экран одновременно, вы увидите белый цвет.

    Другое дело, когда вы смешиваете краски. Каждый цвет краски поглощает одни цвета и отражает другие. Каждый раз, когда смешивается другой цвет краски, поглощается больше цветов и меньше отражается. Основными цветами для добавления красок или красителей, например, для компьютерного принтера, являются желтый, пурпурный и голубой. Если вы смешаете все эти цвета вместе, вы поглотите весь свет и будете видеть только черный, потому что свет не будет отражаться обратно к вашим глазам.

    С этим можно легко поэкспериментировать. Держите перед глазами цветной целлофан и осмотритесь. Обратите внимание, как изменились некоторые цвета, а другие выглядят одинаково. Выясните, какие цвета поглощаются.

    Природа науки

    Иногда требуется много времени, чтобы новые научные знания получили широкое распространение. Например, многие люди раньше думали, что собаки могут видеть только в черно-белом цвете. Теперь известно, что у собак есть два типа цветовых рецепторов, которые позволяют им видеть желтый и пурпурный цвета. Несмотря на то, что первоначальный эксперимент был проведен в 1989, многие люди до сих пор не знают, что собаки могут видеть некоторые цвета.

    Похожие материалы

    Вы когда-нибудь задумывались, почему флуоресцентные цвета выглядят такими яркими? Все это благодаря энергии, как описано в статье Свет – цвет и флуоресценция.

    Полезные ссылки

    Поэкспериментируйте со смешиванием основных цветов света и красок, используя эти симуляции на веб-сайте причин цвета.

    Узнайте о том, как у собак есть цветовое зрение и как они видят мир, в этой статье от Live Science.

    Загрузите этот PDF-файл с сайта Учитель физики , чтобы узнать, как сделать смеситель цветного света из светодиодов и шарика для пинг-понга.

    Прочтите этот учебник о человеческом восприятии, пространственном восприятии и иллюзиях биологии онлайн, чтобы узнать о человеческом восприятии.

      Опубликовано 4 апреля 2012 г., обновлено 24 апреля 2019 г.0006

      Скачать 0 шт.

      Скачать все

      цвет | Определение, восприятие, типы и факты

      Эксперимент Исаака Ньютона с призмой

      Смотреть все СМИ

      Ключевые люди:
      Исаак Ньютон Эдвин Герберт Лэнд Джон Тиндалл Карл Шварцшильд Иван Васильевич Клюн
      Похожие темы:
      цветовой круг синий апельсин Виолетта пурпурный

      Просмотреть весь связанный контент →

      Резюме

      Прочтите краткий обзор этой темы

      цвет , также пишется как цвет , аспект любого объекта, который может быть описан в терминах оттенка, светлоты и насыщенности. В физике цвет связан именно с электромагнитным излучением определенного диапазона длин волн, видимым человеческому глазу. Излучение таких длин волн составляет часть электромагнитного спектра, известную как видимый спектр, т. е. свет.

      Зрение, очевидно, участвует в восприятии цвета. Однако человек может видеть при тусклом свете, не различая цвета. Цвета появляются только при большем количестве света. Следовательно, свет некоторой критической интенсивности также необходим для восприятия цвета. Наконец, следует учитывать и то, как мозг реагирует на визуальные стимулы. Даже в одинаковых условиях один и тот же объект может казаться одному наблюдателю красным, а другому оранжевым. Ясно, что восприятие цвета зависит от зрения, света и индивидуальной интерпретации, а понимание цвета включает в себя физику, физиологию и психологию.

      Классификация цветов в видимом спектре электромагнитного излучения по оттенку, насыщенности и яркости

      Посмотреть все видео к этой статье

      Объект кажется окрашенным из-за того, как он взаимодействует со светом. Анализом этого взаимодействия и факторов, его определяющих, занимается физика цвета. Физиология цвета включает реакцию глаз и мозга на свет и сенсорные данные, которые они производят. Психология цвета вызывается, когда разум обрабатывает визуальные данные, сравнивает их с информацией, хранящейся в памяти, и интерпретирует их как цвет.

      Эта статья посвящена физике цвета. Для обсуждения цвета как качества света см. свет и электромагнитное излучение. О физиологических аспектах цветового зрения см. глаз: Цветовое зрение. См. также живопись для обсуждения психологического и эстетического использования цвета.

      Викторина «Британника»

      Происхождение красок, пигментов и красителей

      Какое насекомое использовалось в качестве источника дубильной кислоты для создания насыщенного черного красителя? Какого цвета большие скрипки, изготовленные Антонио Страдивари, начиная с 1684 года? Проверьте свои знания. Пройди тест.

      Цвет и свет

      Природа цвета

      Аристотель рассматривал цвет как продукт смешения белого и черного, и это было преобладающим мнением до 1666 года, когда эксперименты Исаака Ньютона с призмой обеспечили научную основу для понимания цвета . Ньютон показал, что призма может разбить белый свет на ряд цветов, которые он назвал спектром ( см. рисунок ), и что рекомбинация этих спектральных цветов воссоздает белый свет. Хотя он признавал, что спектр непрерывен, Ньютон использовал семь названий цветов: красный, оранжевый, желтый, зеленый, синий, индиго и фиолетовый для сегментов спектра по аналогии с семью нотами музыкальной гаммы.

      Ньютон понял, что цвета, отличные от цветов в спектральной последовательности, действительно существуют, но он отметил, что

      Получить подписку Britannica Premium и получить доступ к эксклюзивному контенту. Подпишитесь сейчас

      Все цвета во Вселенной, созданные светом и не зависящие от силы воображения, являются либо цветами однородных светов [то есть спектральными цветами], либо составными из них.

      Ньютон также признал, что

      лучи, собственно говоря, не окрашены. В них нет ничего иного, как некая сила… возбуждать ощущение того или иного цвета.

      Неожиданная разница между восприятием света и восприятия звука проясняет этот любопытный аспект цвета. Когда лучи света разных цветов, например красного и желтого, проецируются вместе на белую поверхность в равных количествах, результирующее восприятие глаза сигнализирует мозгу один цвет (в данном случае оранжевый), сигнал, который может быть идентичным тому, что создается одним лучом света. Однако когда два музыкальных тона звучат одновременно, отдельные тона все же можно легко различить; звук, производимый комбинацией тонов, никогда не идентичен звуку одного тона. Тон является результатом определенной звуковой волны, но цвет может быть результатом одного светового луча или комбинации любого количества световых лучей.

      Однако цвет можно точно определить по оттенку, насыщенности и яркости — трем характеристикам, достаточным для того, чтобы отличить его от всех других возможных воспринимаемых цветов. Оттенок — это тот аспект цвета, который обычно ассоциируется с такими терминами, как красный, оранжевый, желтый и так далее.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *